

CNN: CONVOLUTIONAL NEURAL NETWORKS Deep Learning for Computer Vision

Arthur Douillard

https://arthurdouillard.com/deepcourse

Convolutional Neural Networks

Large dimensionality $W \times H \times C$

 \rightarrow Classifying a 224x224x3 images to 1000 classes with a single layer means more than 150M parameters!

ightarrow Need some dimension reduction tool

Fewly structured data

- \rightarrow MLPs have no prior on spatiality
- \rightarrow need more data

Before

Lot of work on how to extract interesting features

But with "hand-crafted" priors

Use gradient descent and neural network to learn how to extract the right features

Convolution kernel

$$\left(\begin{bmatrix}a & b & c\\d & e & f\\g & h & i\end{bmatrix} * \begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9\end{bmatrix}\right) [2,2] = (a \cdot 1) + (b \cdot 2) + (c \cdot 3) + (d \cdot 4) + (e \cdot 5) + (f \cdot 6) + (g \cdot 7) + (h \cdot 8) + (i \cdot 9)$$

Light blue: input image Dark blue: convolution kernel Green: output features

GIF source

Convolution Neural Network

Identity

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Edge detection

Sharpen

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Convolution Neural Network

A convolution kernel is a learned weight of the network

 $W = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

RGB Image 3×28×28

One kernel 5×5 is applied on Red, one on Green, and one on Blue. The three results are summed together pixel-wise.

$$X * W = \sum_{c_i}^3 X_{c_i} * W_{c_i}$$

RGB Image 3×28×28

One kernel 5×5 per input channel!

$$X * W = \sum_{c_i}^3 X_{c_i} * W_{c_i}$$

RGB Image 3×28×28

Only produce one set of features...

$$X * W = \sum_{c_i}^3 X_{c_i} * W_{c_i}$$

RGB Image 3×28×28

$$(X * W)_{c_o} = \sum_{c_i}^3 X_{c_i} * W_{c_o,c_i}$$

RGB Image 3×28×28

$$(X * W)_{c_0} = \sum_{c_i}^3 X_{c_i} * W_{c_0,c_i}$$

RGB Image 3×28×28

$$(X * W)_{c_o} = \sum_{c_i}^3 X_{c_i} * W_{c_o,c_i}$$

RGB Image 3×28×28

Likewise, these 4-channels features will be input to another kernel

$$(X * W)_{c_0} = \sum_{c_i}^{3} X_{c_i} * W_{c_0,c_i}$$

RGB Image 3×28×28

Notice features spatial dimension changed?

Features 4×24×24

$$(X * W)_{c_0} = \sum_{c_i}^3 X_{c_i} * W_{c_0,c_i}$$

$$w = 4, k = 2, s = 1, p = 0$$

$$\frac{w-k+2p}{s}+1$$

1a + 2b + 5c + 6d

w = 4, k = 2, s = 1, p = 0

$$\frac{w-k+2p}{s}+1$$

2a + 3b + 6c + 7d

$$w = 4, k = 2, s = 1, p = 0$$

$$\frac{w-k+2p}{s}+1$$

$$w = 4, k = 2, s = 1, p = 0$$

$$\frac{w-k+2p}{s}+1$$

$$w = 4, k = 2, s = 1, p = 0$$

$$\frac{w-k+2p}{s}+1$$

Stride equal to 2

$$w = 4, k = 2, s = 2, p = 0$$

$$\frac{w-k+2p}{s}+1$$

Stride equal to 2

$$w = 4, k = 2, s = 2, p = 0$$

$$\frac{w-k+2p}{s}+1$$

Stride equal to 2

$$w = 4, k = 2, s = 2, p = 0$$

$$\frac{w-k+2p}{s} + 1$$

$$w = 4, k = 2, s = 2, p = 0$$

$$\frac{w-k+2p}{s}+1$$

Padding equal to 1, useful to keep spatial dimension constant

$$w = 4, k = 2, s = 2, p = 1$$

$$\frac{w-k+2p}{s} + 1$$

Padding equal to 1, useful to keep spatial dimension constant

$$w = 4, k = 2, s = 2, p = 1$$

Output volume:

$$\frac{w-k+2p}{s} + 1$$

Padding equal to 1, useful to keep spatial dimension constant

$$w = 4, k = 2, s = 2, p = 1$$

$$\frac{w-k+2p}{s}+1$$

The larger the input features, and the number of output channels

- \rightarrow More compute, slower
- \rightarrow More intermediary activations to store, heavier

Pooling with a 2×2 kernel and stride 2

Input 4×4

No learned parameters!

From crude to fine-grained patterns

Semantic structure a posteriori (not really usable)

CNN Architectures

Basic CNN

Basic CNN

Flatten: merge all dimensions into one

- \rightarrow no loss of information
- \rightarrow huge dimensionality
- ightarrow Dependent on the image size

Global Average Pooling: pooling with full kernel size

- \rightarrow lose a lot of information
- \rightarrow Dimensionality of the number of channels
- \rightarrow No dependent on the image size

First ConvNet

Thomas Robert's Thesis

- Trained on ImageNet
- One of the first to use GPUs
- Model parallelism on 2 GPUs

Big ConvNet

- Super large (134M parameters), mainly because of the flatten + fully-connected layers
- Similar to AlexNet in bigger
- Large kernel sizes (7x7 and 5x5)

- Multi-scale view

Thomas Robert's Thesis

- Super strong architecture, still important today

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Hard to train very deep network →Gradient struggles to each earlier layers ResNet (2015)

[He et al. ECCV 2015]

DenseNet (2016)

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [32]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [34]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7 M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [42]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7 M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

More residuals!

Squeeze-Excite Net (2017)

Attention per channels

State-of-the-Art

PS: Most of the State-of-the-Art papers now use external data

Transfer Learning

Need a lot of data to train a modern CNN.

But what to do when dataset is not big enough?

- 1. Train model on ImageNet with 1000 classes
- 2. Remove last fully connected layer
- 3. Add new fully connected with the number of classes of the target dataseet
- 4. Fine-tune model

We can finetune only the new FC layer, or also the whole ConvNet.

Usually starts with a learning rate 10x lower.

Transfer works better if the source domain is close to the target domain.

Learning cat vs dog after imagenet: easy

Learning to spot cancers on radiography after imagenet: harder

Pretrained models

Plenty of pretrained models in PyTorch on

Torchvision zoo:

<> Code

TORCHVISION.MODELS

The models subpackage contains definitions of models for addressing different tasks, including: image classification, pixelwise semantic segmentation, object detection, instance segmentation, person keypoint detection and video classification.

Classification S

The models subpackage contains definitions for the following model architectures for image classification:

Tricks

Combine multiple image alterations to produce a "new" image.

These augmentations are done on-the-fly with different randomness each time.

Results:

- Increase artificially a small dataset, less overfit!
- Make the model more robust to image corruption

Dropout

Randomly drop unit during a forward pass.

Drastically reduce overfitting:

- Sort of ensemble of networks
- Force all units to contribute

Usually only for fully connected layers.

(a) Standard Neural Net

Sritastava et al. JMLR 2014

(b) After applying dropout.

During training with batch Statistics. During testing with running mean and std.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ, β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\begin{split} \mu_{\mathcal{B}} &\leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i & // \text{ mini-batch mean} \\ \sigma_{\mathcal{B}}^2 &\leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2 & // \text{ mini-batch variance} \\ \widehat{x}_i &\leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} & // \text{ normalize} \\ y_i &\leftarrow \gamma \widehat{x}_i + \beta \equiv \mathbf{BN}_{\gamma,\beta}(x_i) & // \text{ scale and shift} \end{split}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Small break, then coding session!