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Neural Architecture Search



Amoeba

Figure 1: NASNet Search Space [54]. LEFT: the full outer
structure (omitting skip inputs for clarity). MIDDLE: de-
tailed view with the skip inputs. RIGHT: cell example. Dot-
ted line demarcates a pairwise combination.
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- Given a fixed architecture (left & middle), learn to find the optimal cell (right)
- Learning is done here with an evolutionary algorithm that needs to retrain &
check model accuracy FOR EACH new mutation!

- NAS are usually very computation intensive, and thus it’s mostly big private lab
that works on it. With Quoc Le’s team at Google Brain the main one.

[Real et al. AAAI 2019]
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- Or try randomly wired neural network based on minimal set of rules
- But note that some approaches use reinforcement learning

[Xie et al. arXiv 2019] 4
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EfficientNet
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- EfficientNet, one of the best ConvNet as of 2021, was made with NAS
- Based on a compound scaling rule they drastically reduce the space to grid search

[Tan and Le, ICML 2019] 5
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Transformers



Attention is all you need
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[Tan and Le, ICML 2019] 7
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N [SEP] 1

E ’

M

15 R S N SN S

_ﬁ L
! ( Tok N 1 [ [SEP] ](T‘)M
Masked Sentence A Masked Sentence B
*
Unlabeled Sentence A and B Pair

- Modification of the Transformer

- No more encoder/decoder, only many blocks

- Introduction of a special token [CLS] that is learned
- Was a big revolution in the NLP field

[Devlin et al. NAACL 2019] 8
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Transformer Encoder
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- First full application of transformers with a BERT-like architecture to vision

[Dosovitskiy, Beyer, Kolesnikov et al. ICLR 2021] 9
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Patch, Position, and class token
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- Use a convolution with a kernel size equal to the patch size to generate the tokens
- Total size is thus (batch size, number of tokens, embedding dimension)

- Add an extra token [class] that is a learned vector of size (embedding dimension)

- Add to all tokens a learned positional embeddings

[Dosovitskiy, Beyer, Kolesnikov et al. ICLR 2021] 10
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Self-Attention
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[Dosovitskiy, Beyer, Kolesnikov et al. ICLR 2021] 11
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Multi-heads Self-Attention
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In practice, the self-attention is done multiple times in parallel, with different heads.

[Dosovitskiy, Beyer, Kolesnikov et al. ICLR 2021] 12
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- Normalize per channel

- Do not track running mean/std = same behavior between train and test!
- Used at first for RNN in NLP

[Ba et al. NeurIPS Workshop 2016], image source 13
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top-1 accuracy
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- Transformers are hard to train because they lack inductive bias, and thus needs way more

data than a ConvNet

- DeiT partially close this gap by using tons of data augmentations and regularizations

[Touvron et al. ICML 2021]
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- Inserting the class tokens in later blocks may prove beneficial

[Touvron et al. ICCV 2021] 15
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- Inserting the class tokens in later blocks may prove beneficial
- Add Class-Attention = linear complexity w.r.t the number of patches!

[Touvron et al. ICCV 2021]

R P l ! ! ‘ ‘ [ I I A = Softmax(Q.KT /+\/d/h)
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Swin Transformer
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[Liu et al. ICCV 2021] 17
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Swin Transformer
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A local window to
perform self-attention

v

A patch

- Each layer shift the windows (top-left to bottom-right)
- Allow overlap and thus communication between areas of previous layer

[Liu et al. ICCV 2021] 18
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MLP Comeback!



Separable Convolutions

DK LI

DK <—M—>

(b) Depthwise Convolutional Filters
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(a) Standard Convolution Filters 1

(c) 1 x 1 Convolutional Filters called Pointwise Convolution in the con-
text of Depthwise Separable Convolution

- Depthwise convolutions: doesn’t mix input channels
- Pointwise convolutions: doesn’t mix spatial dimensions

[Chollet, arXiv 2016] 20



https://arxiv.org/abs/1610.02357

MLP-Mixer
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- Similarly to Separable Convolutions, apply a MLP on the channels dimension and a MLP on
the patches dimensions

- Multiple other papers had the same idea at the same time (including ResMLP)

[Tolstikhin and Houlsby and Kolesnikov and Beyer et al. arXiv 2021] 21
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MLP-Mixer
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Training Size

However needs even more data than transformers based (ViT)
Convolutions models (here BiT-R152x2) are still much more data efficient when training
from scratch
- However, some advocates that most future applications will be based on those new
large (transformer, mlp, etc.) models pretrained on large-scale data
- See [Bommasani et al. arXiv 2021]
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Transformer & MLP-Mixer relation



Fourier Transformer
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Fourier transform that can be expressed as a
matrix multiplication with this constant matrix:

5 W= (e *k/V/N

- Not as good as Self-Attention, but still impressive results

- Means that "Attention is NOT all you need”, but rather a way to combine inputs
- Likewise convolutions combine pixels through the increasing receptive field

24



Meta-Former

Accuracy vs. MACs vs. Model Size
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- Even simple pooling as token mixer seems to reach SotA results
- For all training config (optimizer, scheduling, regularizations, etc.) is important

- PoolFormer was released 22 Nov 2021, so everything is very new
—> Still a very active research problem

— Conclusions may improve back all fields (Vision, NLP, Speech, etc.)
- Lot of recent work on multi-modal, e.g. combining Vision and NLP

[Yu et al. arXiv 2021] 25
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Tricks that work for most architectures



Train / Val / Test

- It's extremely important to tune the hyperparameters on a val set

- In real-life, you often don’t have access to the full test set
- And this test set may change constantly

- It's also important to ensure that your train and val sets have the same distribution than the
test set
- Beware of the sampling bias, e.g. I'm only labeling images of cars oriented towards the
front, but in the test / real-life | may see cars in other orientations
- See [Torralba and Efros, CVPR 2011]

27
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Active Learning
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- More data is (almost) always better, see the Sutton’s Bitter Lesson

- But hand-labeling data is very costly, both in S and time

- Active learning aims to determine which data to labelize in priority to be added to the
training set
- Alot of the literature is based on Bayesian stats, with Yarin Gal’s team
- But often done on small-scale datasets (MNIST, CIFAR)
- And a random sampling is often quite competitive despite its simplicity

[Gal et al. ICML 2017] 28
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Early Stopping

- Training for too long, and you start to overfit. So when to stop?

- Monitor a metric (accuracy, loss, etc.) on the VALIDATION SET (!) and if this metric gets
worse for X epochs, stop training

- "A beautiful free lunch” according to Turing award’s Geoffrey Hinton

Number of epochs

—— Train
Val
Stop
here 7/ Overfitting

Loss

29



Decrease Learning Rate

\ r~15-~..
- A high learning rate during the beginning of the training may help
- Acts as a regularization by skipping the local minima that are too sharp and thus
usually generalize less

- Then decrease learning rate gradually to go deeper in a local minima towards the training
end
- Either decrease learning rate (usually divided by 10) at particular epochs
- Or decrease if validation metric (loss, acc, etc.) doesn’t improve

- Some scheduling as Cosine decreases and increases (a little less) repetitively

30



Smooth Labeling

e =yl —a)+a/K

[0, O, 1, O] with a @ = 0.1 produces [0.025, 0.025, 1, 0.025]

Avoid overconfidence in the model, when confidence is always close to 0.999...

- And thus reduce overfitting

Avoid miscalibration where model confidence is
not correlated to model accuracy
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Smooth labeling: [Muller et al. NeurlIPS 2019], Miscalibration: [Guo et al. ICML 2017]
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MixUp & Co

ResNet-50 ixup [48] Cutout [3] CutMix

Image

Dog 0.5
Cat 0.5

Dog 0.6

Label Dog 1.0 Cat 0.4

Dog 1.0

- Mix two images and their labels together
- In practice MixUp mix them with factors like 0.9/0.1 (not 0.5/0.5 as on the image)

- Acts as regularization to reduce overfitting

- A LOT of alternative to MixUp exists (CutOut, CutMix, FixMatch, MixMo, PuzzleMix, etc.)

Mixup: [Zhang et al. ICLR 2017] 32
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Knowledge Distillation

- Train one super-mega-large model (called teacher)
Distill the knowledge of the teacher onto a smaller model (called student)

- In practice, train students as usual but add a another loss:

- KL-divergence between the probabilities of the teacher and the student

- The probabilities acts as dark knowledge with extra information
(aka if the teacher say this is a dog with 0.7 confidence, we know it’s a dog, but it’s

probably not the most archetypal dog ever)

- Often add a temperature T on the logits before softmax
If T > 1, reduces the sharpness of the probabilities leading too more useful info

G — exp(z;/T)
C Y exp(z/T)

[Hinton et al. NeurlPS Workshop 2014] 33
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Thresholding & Open-Set

- In the real-life test set, you don’t always want to predict on all images

- Example:
- at Heuritech we predict fashion trends from images scrapped from Instagram. Given an
image of dog, my model should predict any trend!

- You choose to discard model prediction if its confidence is lower than a threshold

- One threshold per class is better
- Compute threshold on the validation set (which needs to have negative images!)
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Accuracy vs Precision+Recall=F1

relevant elements
I 1

In real-life classes are never equally balanced

false negatives true negatives

- If there are 90% of dogs, and 10% of cats, and your model has ¢ ;

less than 90% of accuracy it’s bad...
- Answering dog every times gives 90% accuracy

true positives false positives

- Best to use other metrics like Precision and Recall or
their combination the F1-Score

- Recall is particularly useful in open-set where your model selected elements
shouldn’t predict on all images

How many selected How many relevant
items are relevant? items are selected?

Precision = — Recall = —

7o 2 _ 9 precision - recall tp
"7 recall! + precision~!  ~  precision + recall tp + %(fp + fn)

Wikipedia 35



Dropout

Randomly drop unit during a forward pass.

Drastically reduce overfitting:
- Sort of ensemble of networks
- Force all units to contribute

Usually only for fully connected layers.
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Stochastic Depth

1.0

0.9 .

active inactive

- Randomly drop whole residual block
- Only the identity shortcut is active

- Allow training even deeper networks, and is used in transformers

[Huang and Sun et al. NeurlPS 2016] 37
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Batch Normalization

Normalize intermediary
features.

During training with batch
Statistics. During testing with
running mean and std.

0.9} 7

0811 " _Without BN

With BN

10K 20K 30K 40K 50K

[loffe and Szegedy ICML 2015]

Input: Values of z over a mini-batch: B = {z; ,,};
Parameters to be learned: -, 3
Output: {y; = BN, 5(z;)}

1
. — ; // mini-batch
b ;:c mini-batch mean
1 Trl o .
o — — (z; — ug)* // mini-batch variance
=1
T; Li— KB // normalize
\/ag + €
y; + 7Z; + 8 = BN, s(z;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.
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SAM: Sharpness-Aware Minimization

Input: Training set S £ U™, {(x:, y:)}, Loss function
[: W x X x)Y — R4, Batch size b, Step size n > 0,
Neighborhood size p > 0.

Output: Model trained with SAM

» Initialize weights wo, t = 0;

while not converged do

! Wi Sample batch B = {(z1, Y1), ...(zs, yp) };

' — = Compute gradient V., L (w) of the batch’s training loss;

Compute €(w) per equation 2;

Wadv —NVL(Wady) Compute gradient approximation for the SAM objective

# L P (equation 3): g = Vu Lp(W)|w+é(w);
Update weights: w1 = wt — ng;
t=t+1;

end
return w;

- Do not optimize network on a particular point of the parameters space but rather a region

- All neighbors parameters must also be good, leading to wider optimum and thus better
generalization

- Needs twice more forward/backward...

[Foret et al. ICLR 2021] 39
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Small break,
then coding session!



