

NEW ARCHITECTURES AND TRICKS TO TRAIN THEM Deep Learning for Computer Vision

Arthur Douillard

https://arthurdouillard.com/deepcourse

Neural Architecture Search

Amoeba

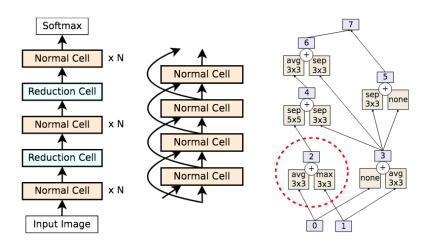
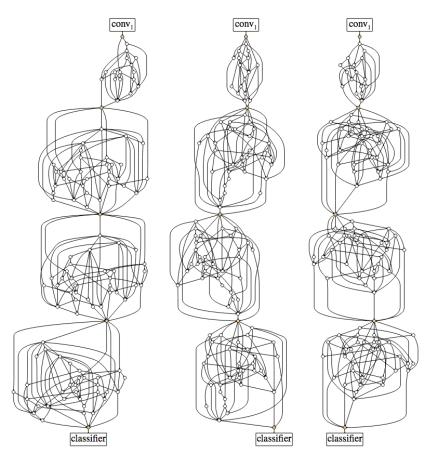


Figure 1: NASNet Search Space [54]. LEFT: the full outer structure (omitting skip inputs for clarity). MIDDLE: detailed view with the skip inputs. RIGHT: cell example. Dotted line demarcates a pairwise combination.

- Given a fixed architecture (left & middle), learn to find the optimal cell (right)
- Learning is done here with an **evolutionary algorithm** that needs to retrain & check model accuracy FOR EACH new mutation!
- NAS are usually very computation intensive, and thus it's mostly big private lab that works on it. With Quoc Le's team at Google Brain the main one.

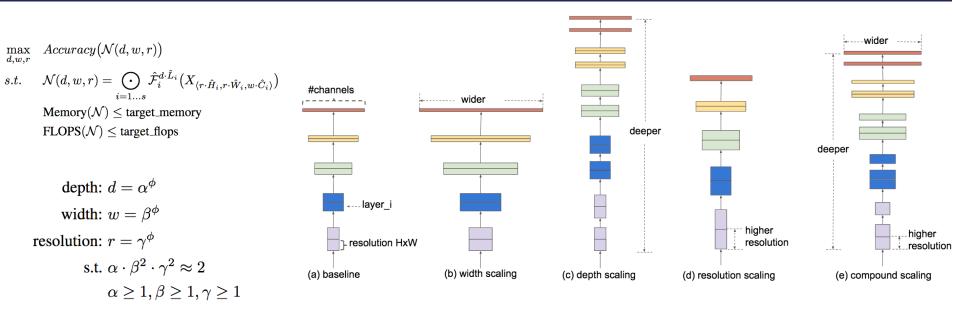
[Real et al. AAAI 2019]

RandWire



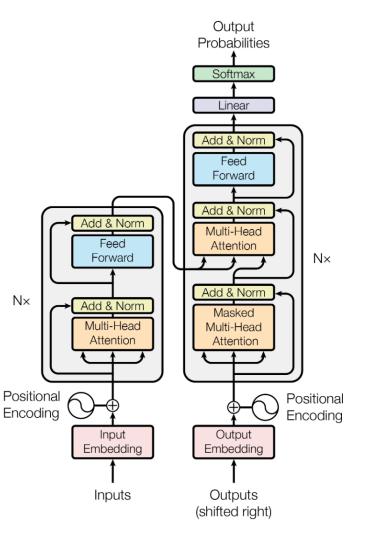
- Or try randomly wired neural network based on minimal set of rules
- But note that some approaches use reinforcement learning

EfficientNet

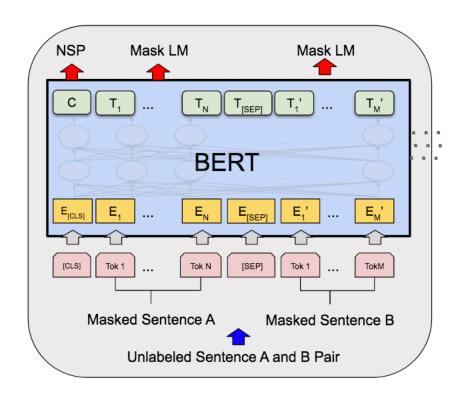


- EfficientNet, one of the best ConvNet as of 2021, was made with NAS
- Based on a **compound scaling** rule they drastically reduce the space to grid search

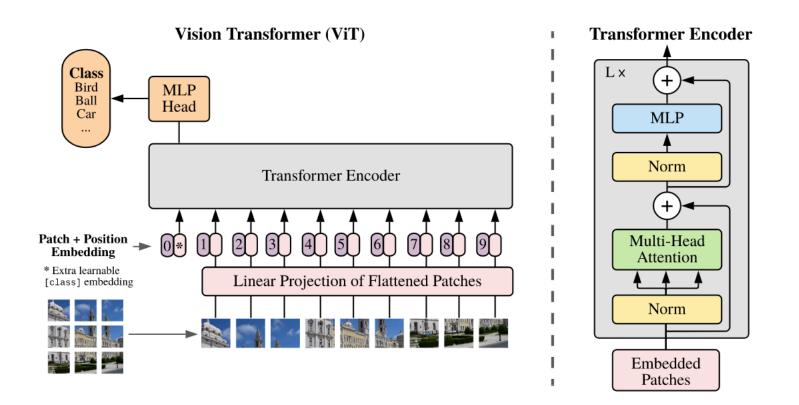
Transformers



- At first designed for machine translation
- Does not rely on Conv1d or RNN
- Main block are FC layers and the famous
 Multi-Head Attention
- Made of a encoder (left) and decoder (right)

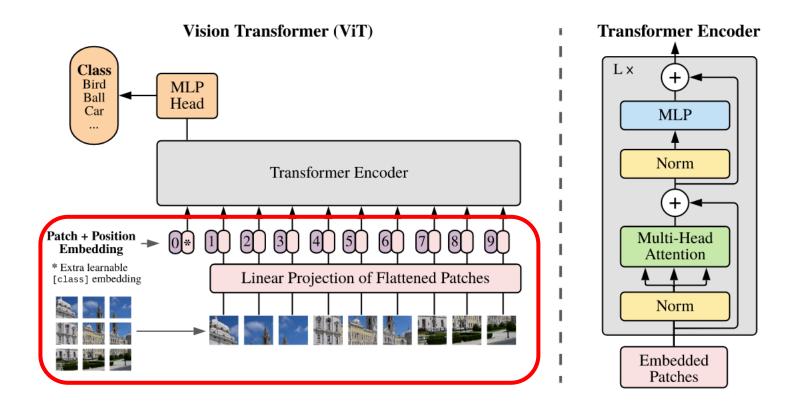


- Modification of the Transformer
- No more encoder/decoder, only many blocks
- Introduction of a special token [CLS] that is learned
- Was a big revolution in the NLP field



- First *full* application of transformers with a BERT-like architecture to vision

Patch, Position, and class token



- Use a convolution with a kernel size equal to the patch size to generate the **tokens**
 - Total size is thus (batch size, number of tokens, embedding dimension)
- Add an extra token [class] that is a learned vector of size (embedding dimension)
- Add to all tokens a learned positional embeddings

Self-Attention

 Apply three different linear transformations, to create the Query, the Key, and the Value

$$Q = XW_q$$

$$K = XW_k$$

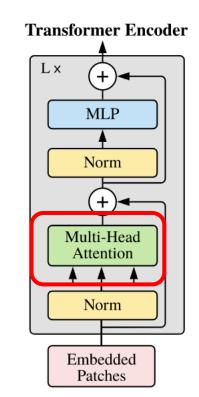
$$V = XW_v$$

 Compute the attention matrix that measures the inter-tokens similarity

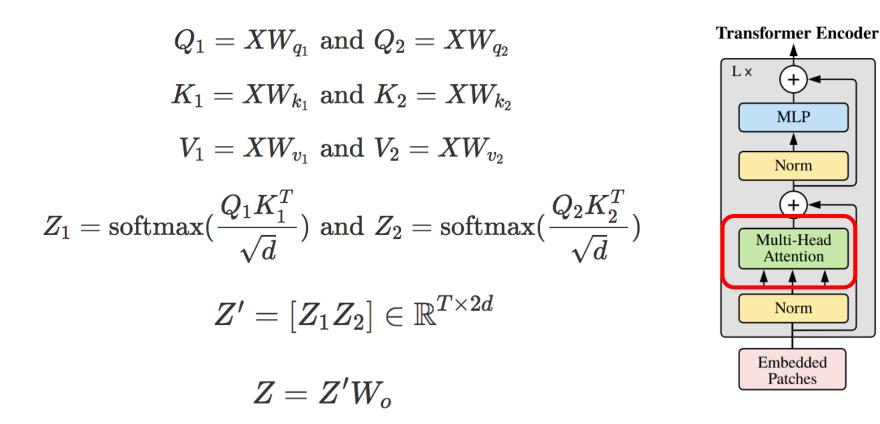
$$A = ext{softmax}(rac{QK^{T}}{\sqrt{d}})$$

3. Ponderate the Value matrix with the attention matrix

Z = AV

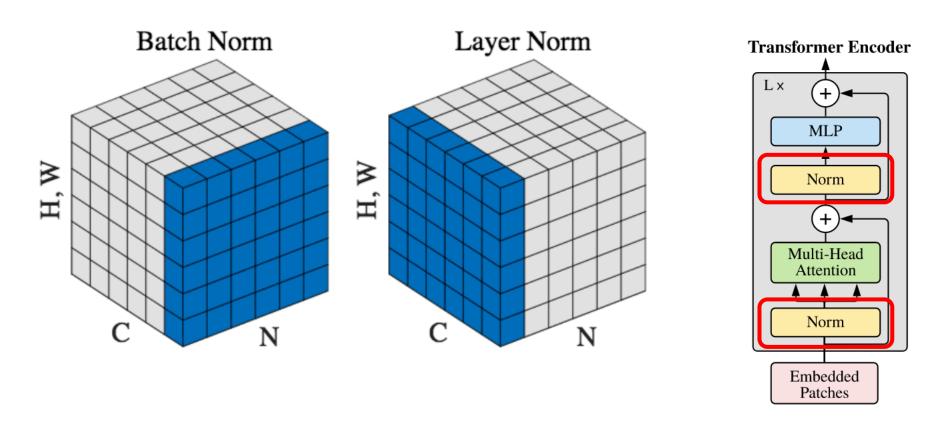


Multi-heads Self-Attention



In practice, the self-attention is done multiple times in parallel, with different **heads**.

Layer Norm

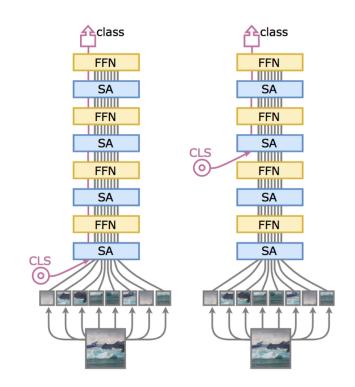


- Normalize per channel
- Do not track running mean/std → same behavior between train and test!
- Used at first for RNN in NLP

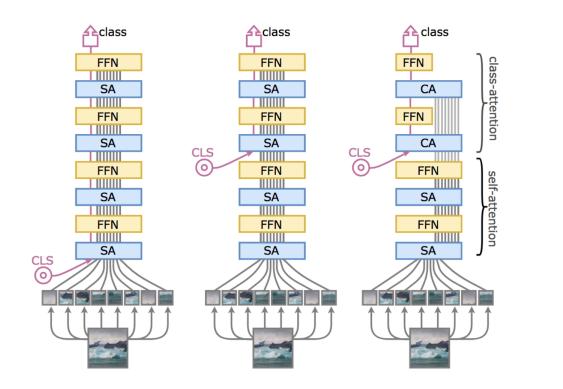
top-1 accuracy

Ablation on ↓	Pre-training	Fine-tuning	Rand-Augment	AutoAug	Mixup	CutMix	Erasing	Stoch. Depth	Repeated Aug.	Dropout	Exp. Moving Avg.	pre-trained 224 ²	fine-tuned 384 ²
none: DeiT-B	adamw	adamw	1	×	1	1	1	1	1	X	X	81.8 ±0.2	$83.1{\scriptstyle~\pm 0.1}$
optimizer	SGD adamw	adamw SGD	5	X X	\ \	\ \	5	\ \	5	X X	X X	74.5 81.8	77.3 83.1
data augmentation	adamw adamw adamw adamw adamw	adamw adamw adamw adamw adamw	×	× • • •	√ √ × √ × ×	√ √ √ √ × ×		5 5 5 5 5	5555	× × × × ×	X X X X X	79.6 81.2 78.7 80.0 75.8	80.4 81.9 79.8 80.6 76.7
regularization	adamw adamw adamw adamw adamw	adamw adamw adamw adamw adamw		X X X X X		55555	×	> × > > > > > > > > > > > > > > > > > >	√ √ × √ √	×	× × × × ×	4.3* 3.4* 76.5 81.3 81.9	0.1 0.1 77.4 83.1 83.1

- Transformers are hard to train because they lack **inductive bias**, and thus needs way more data than a ConvNet
- DeiT partially close this gap by using tons of **data augmentations** and **regularizations**



- Inserting the class tokens in later blocks may prove beneficial



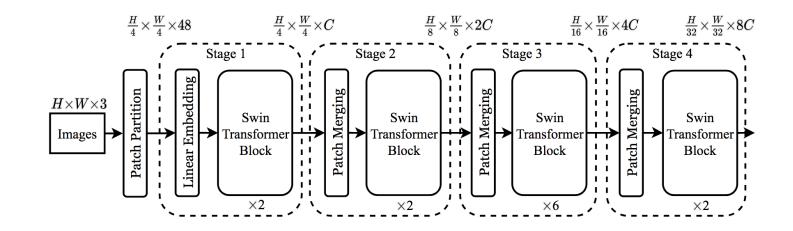
 $z = [x_{\mathrm{class}}, x_{\mathrm{patches}}]$

$$egin{aligned} Q &= W_q \, x_{ ext{class}} + b_q, \ K &= W_k \, z + b_k, \ V &= W_v \, z + b_v. \end{aligned}$$

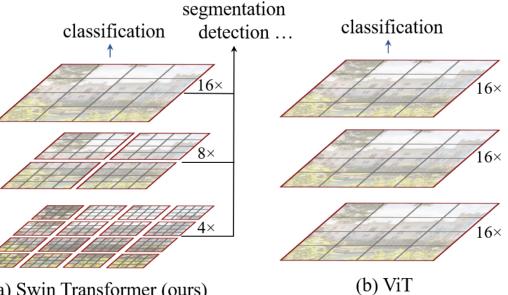
$$A = \operatorname{Softmax}(Q.K^T / \sqrt{d/h})$$

- Inserting the class tokens in later blocks may prove beneficial
- Add Class-Attention \rightarrow linear complexity w.r.t the number of patches!

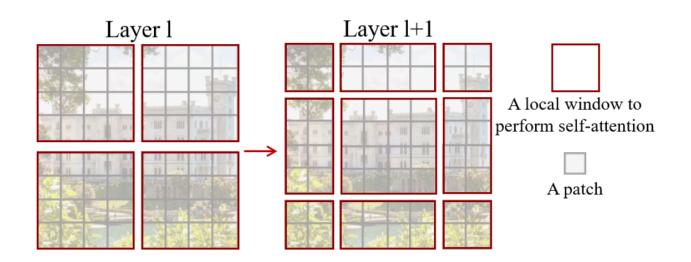
Swin Transformer



- Compute self-attention only on local area, reducing computational complexity
- Token merging is a concatenation alongside the embed dimension axis



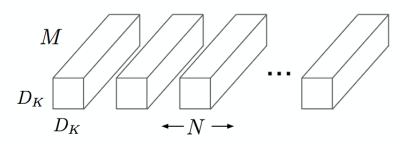
(a) Swin Transformer (ours)



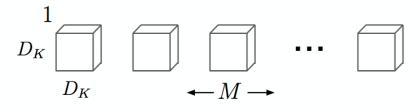
- Each layer shift the windows (top-left to bottom-right)
- Allow overlap and thus communication between areas of previous layer

MLP Comeback!

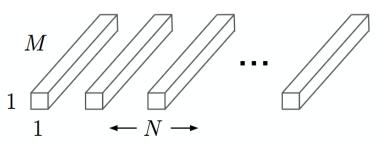
Separable Convolutions



(a) Standard Convolution Filters



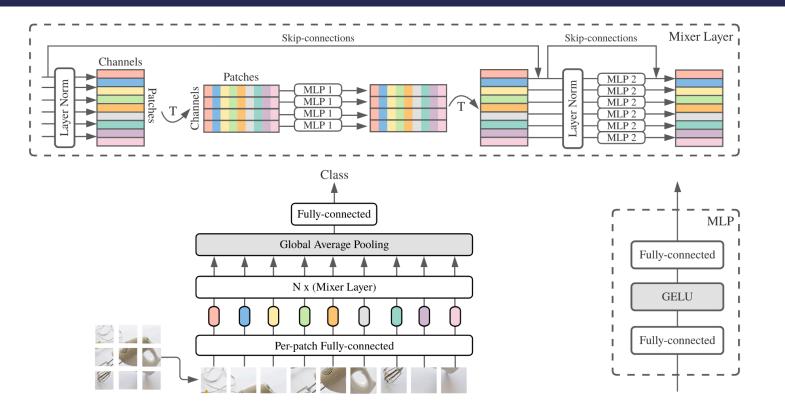
(b) Depthwise Convolutional Filters



(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

- **Depthwise convolutions**: doesn't mix input channels
- **Pointwise convolutions**: doesn't mix spatial dimensions

MLP-Mixer

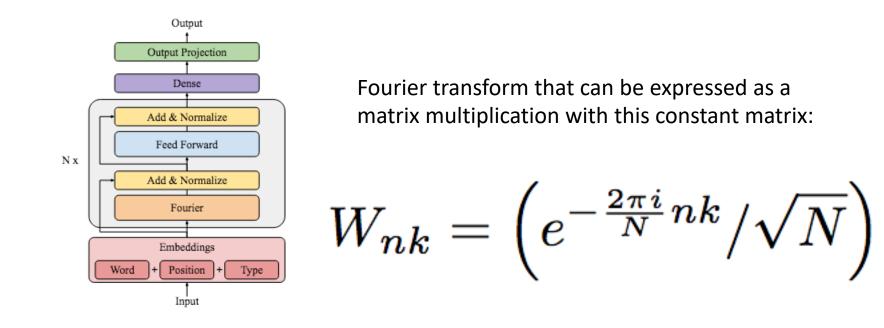


- Similarly to Separable Convolutions, apply a MLP on the channels dimension and a MLP on the patches dimensions
- Multiple other papers had the same idea at the same time (including ResMLP)

	ImNet top-1	ReaL top-1	Avg 5 top-1	VTAB-1k 19 tasks	Throughput img/sec/core	TPUv3 core-days
	Pre-t	rained on	ImageNe	et-21k (public	:)	
• HaloNet [51]	85.8			_	120	0.10k
• Mixer-L/16	84.15	87.86	93.91	74.95	105	0.41k
• ViT-L/16 [14]	85.30	88.62	94.39	72.72	32	0.18k
BiT-R152x4 [22]	85.39		94.04	70.64	26	0.94k
	Pre-tr	ained on	JFT-300N	M (proprietary	y)	
• NFNet-F4+ 7	89.2			_	46	1.86k
• Mixer-H/14	87.94	90.18	95.71	75.33	40	1.01k
• BiT-R152x4 [22]	87.54	90.54	95.33	76.29	26	9.90k
• ViT-H/14 [<u>14</u>]	88.55	90.72	95.97	77.63	15	2.30k
Pre-train	ned on un	labelled o	or weakly	labelled data	(proprietary)	
• MPL [34]	90.0	91.12		_		20.48k
				79.99	15	14.82k

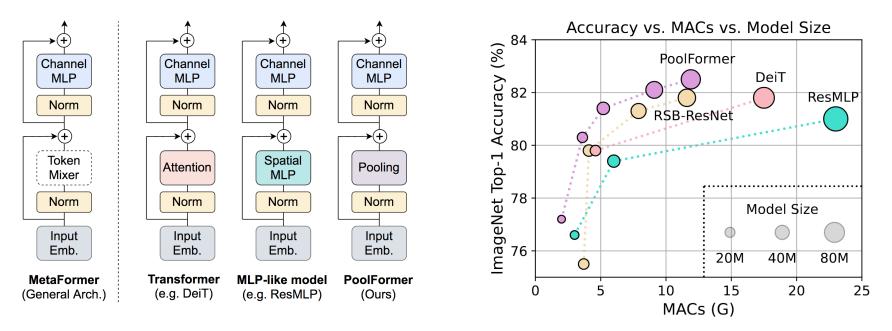
- However needs even more data than transformers based (ViT)
- Convolutions models (here BiT-R152x2) are still much more data efficient when training from scratch
 - However, some advocates that most future applications will be based on those new large (transformer, mlp, etc.) models pretrained on large-scale data
 - See [Bommasani et al. arXiv 2021]

Transformer & MLP-Mixer relation



- Not as good as Self-Attention, but still impressive results
- Means that "Attention is **NOT** all you need", but rather a way to combine inputs
 - Likewise convolutions combine pixels through the increasing receptive field

Meta-Former



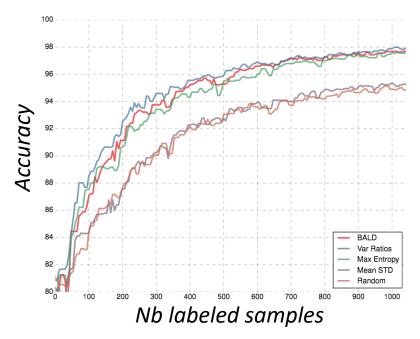
- Even simple pooling as token mixer seems to reach SotA results
- For all training config (optimizer, scheduling, regularizations, etc.) is important
- PoolFormer was released 22 Nov 2021, so everything is very new
- \rightarrow Still a very active research problem
- → Conclusions may improve back all fields (Vision, NLP, Speech, etc.)
- ightarrow Lot of recent work on multi-modal, e.g. combining Vision and NLP

[<u>Yu et al. arXiv 2021</u>]

Tricks that work for most architectures

- It's extremely important to tune the hyperparameters on a val set
- In real-life, you often don't have access to the full test set
 - And this test set may change constantly
- It's also important to ensure that your train and val sets have the same distribution than the test set
 - Beware of the **sampling bias**, e.g. I'm only labeling images of cars oriented towards the front, but in the test / real-life I may see cars in other orientations
 - See [Torralba and Efros, CVPR 2011]

Active Learning

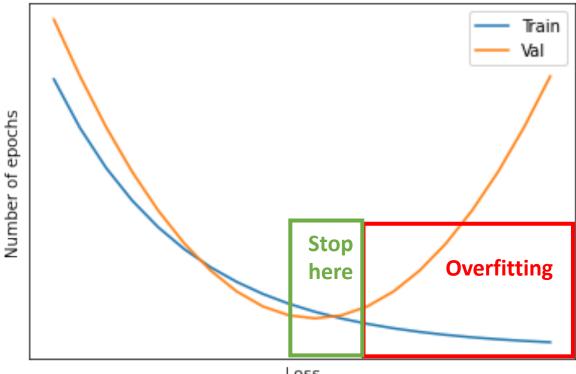


- More data is (almost) always better, see the Sutton's **<u>Bitter Lesson</u>**
- But hand-labeling data is very costly, both in \$ and time
- Active learning aims to determine which data to labelize in priority to be added to the training set
 - A lot of the literature is based on Bayesian stats, with Yarin Gal's team
 - But often done on small-scale datasets (MNIST, CIFAR)
 - And a random sampling is often quite competitive despite its simplicity

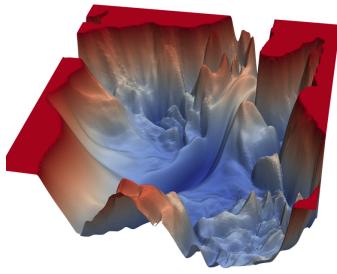
[Gal et al. ICML 2017]

Early Stopping

- Training for too long, and you start to overfit. So when to stop?
- Monitor a metric (accuracy, loss, etc.) on the VALIDATION SET (!) and if this metric gets worse for X epochs, stop training
- "A beautiful free lunch" according to Turing award's Geoffrey Hinton



Decrease Learning Rate



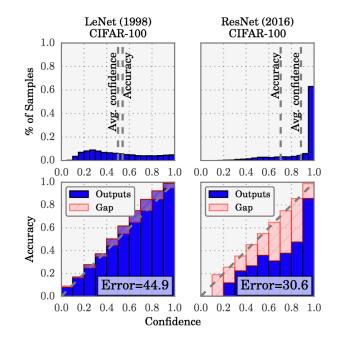
- A high learning rate during the beginning of the training may help
 - Acts as a regularization by **skipping the local minima that are too sharp** and thus usually generalize less
- Then **decrease learning rate gradually to go deeper in a local minim**a towards the training end
 - Either decrease learning rate (usually divided by 10) at particular epochs
 - Or decrease if validation metric (loss, acc, etc.) doesn't improve
- Some scheduling as **Cosine** decreases and increases (a little less) repetitively

$$y_k^{LS} = y_k(1-\alpha) + \alpha/K$$

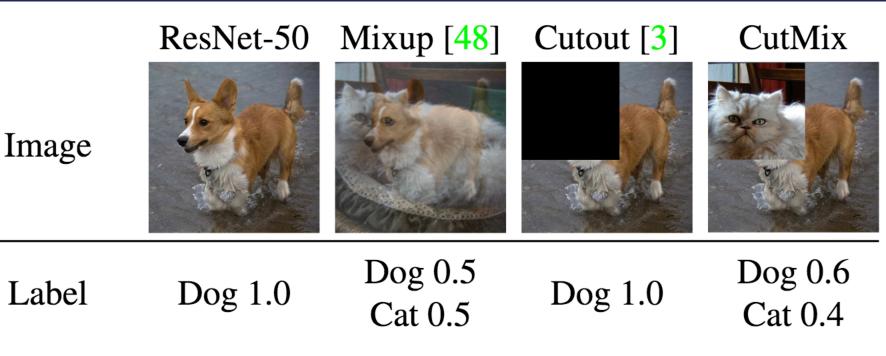
[0, 0, 1, 0] with a $\alpha = 0.1$ produces [0.025, 0.025, 1, 0.025]

- Avoid overconfidence in the model, when confidence is always close to 0.999...
 - And thus reduce overfitting

 Avoid miscalibration where model confidence is not correlated to model accuracy



MixUp & Co



- Mix two images and their labels together
 - In practice MixUp mix them with factors like 0.9/0.1 (not 0.5/0.5 as on the image)
- Acts as regularization to reduce overfitting
- A LOT of alternative to MixUp exists (CutOut, CutMix, FixMatch, MixMo, PuzzleMix, etc.)

- Train one super-mega-large model (called teacher)
- **Distill** the knowledge of the teacher onto a smaller model (called student)
- In practice, train students as usual but add a another loss:
 - **KL-divergence** between the probabilities of the teacher and the student
 - The probabilities acts as dark knowledge with extra information
 - (aka if the teacher say this is a dog with 0.7 confidence, we know it's a dog, but it's probably not the most archetypal dog ever)
 - Often add a **temperature** *T* on the logits before softmax
 - If T > 1, reduces the sharpness of the probabilities leading too more useful info

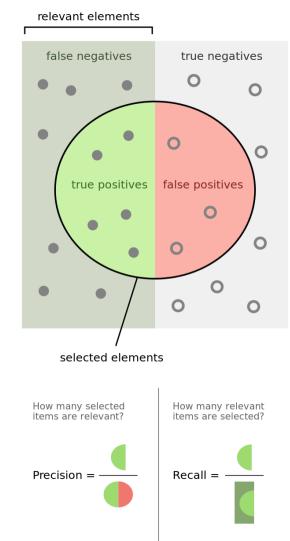
$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$

Thresholding & Open-Set

- In the real-life test set, you don't always want to predict on all images
- Example:
 - at Heuritech we predict fashion trends from images scrapped from Instagram. Given an image of dog, my model should predict any trend!
- You choose to discard model prediction if its confidence is lower than a threshold
 - One threshold per class is better
 - Compute threshold on the validation set (which needs to have negative images!)

- In real-life classes are never equally balanced
- If there are 90% of *dogs*, and 10% of *cats*, and your model has less than 90% of accuracy it's bad...
 - Answering *dog* every times gives 90% accuracy
- Best to use other metrics like Precision and Recall or their combination the F1-Score
- Recall is particularly useful in open-set where your model shouldn't predict on all images

$$F_1 = rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} = rac{ ext{tp}}{ ext{tp} + rac{1}{2}(ext{fp} + ext{fn})}$$



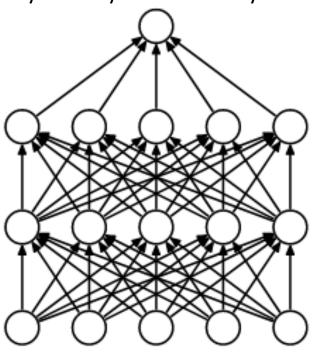
Dropout

Randomly drop unit during a forward pass.

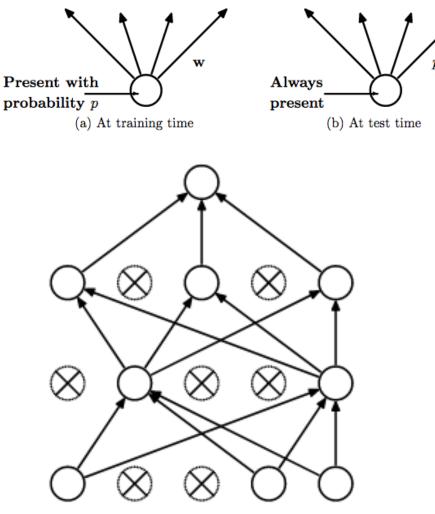
Drastically reduce overfitting:

- Sort of ensemble of networks
- Force all units to contribute

Usually only for fully connected layers.

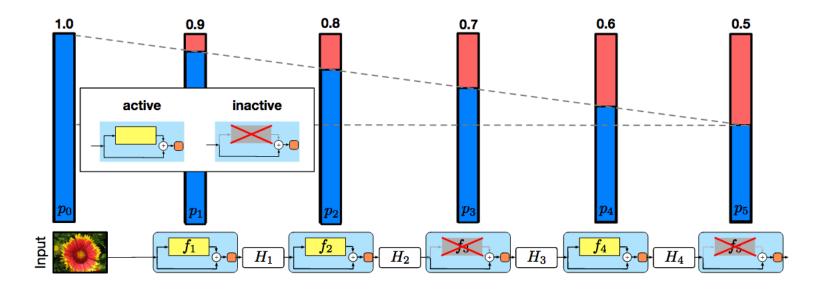


(a) Standard Neural Net



(b) After applying dropout.

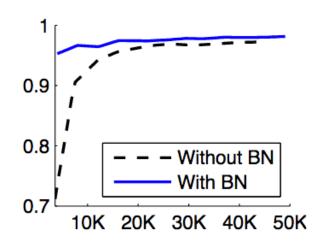
Stochastic Depth



- Randomly drop whole residual block
- Only the identity shortcut is active
- Allow training even deeper networks, and is used in transformers

Normalize intermediary features.

During training with batch Statistics. During testing with running mean and std.

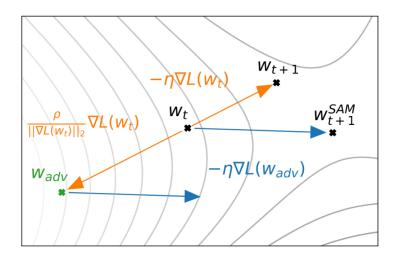


Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ, β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\begin{split} \mu_{\mathcal{B}} &\leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i & // \text{ mini-batch mean} \\ \sigma_{\mathcal{B}}^2 &\leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2 & // \text{ mini-batch variance} \\ \widehat{x}_i &\leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} & // \text{ normalize} \\ y_i &\leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) & // \text{ scale and shift} \end{split}$$

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

SAM: Sharpness-Aware Minimization



Input: Training set $S \triangleq \bigcup_{i=1}^{n} \{(x_i, y_i)\}$, Loss function $l: W \times X \times Y \to \mathbb{R}_+$, Batch size b, Step size $\eta > 0$, Neighborhood size $\rho > 0$. Output: Model trained with SAM Initialize weights $w_0, t = 0$; while not converged do Sample batch $\mathcal{B} = \{(x_1, y_1), ...(x_b, y_b)\}$; Compute gradient $\nabla_w L_{\mathcal{B}}(w)$ of the batch's training loss; Compute $\hat{\epsilon}(w)$ per equation 2; Compute gradient approximation for the SAM objective (equation 3): $g = \nabla_w L_{\mathcal{B}}(w)|_{w+\hat{\epsilon}(w)}$; Update weights: $w_{t+1} = w_t - \eta g$; t = t + 1; end return w_t

- Do not optimize network on a particular point of the parameters space but rather a region
- All neighbors parameters must also be good, leading to wider optimum and thus better generalization
- Needs twice more forward/backward...

Small break, then coding session!