

Continual Learning

Learning continuously without forgetting

Arthur Douillard

https://arthurdouillard.com @Ar_Douillard

Machine Learning & Deep Learning for Information Access

Who am I?

Who

Brief Bio

PhD student at Sorbonne with Prof. Matthieu Cord since July 2019

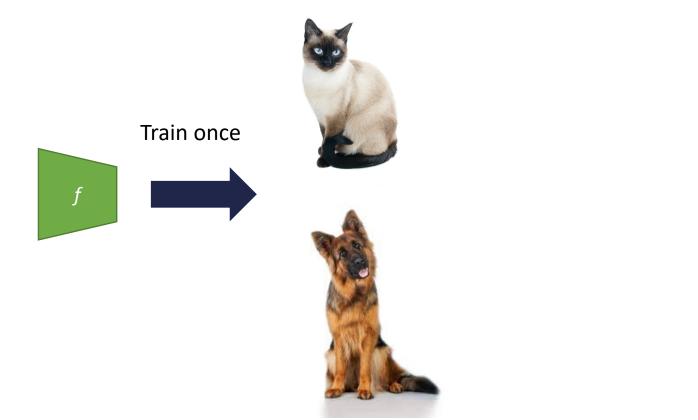
Research Scientist at Heuritech

Teacher at EPITA

... and an ex-intern at Dataiku

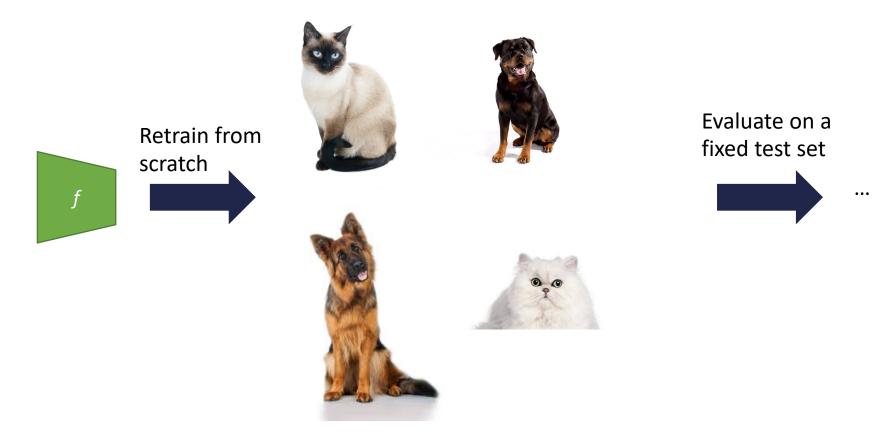
What is Continual Learning?

Data independent and identically distributed (iid) assumption



Evaluate on a fixed test set

Data independent and identically distributed (iid) assumption



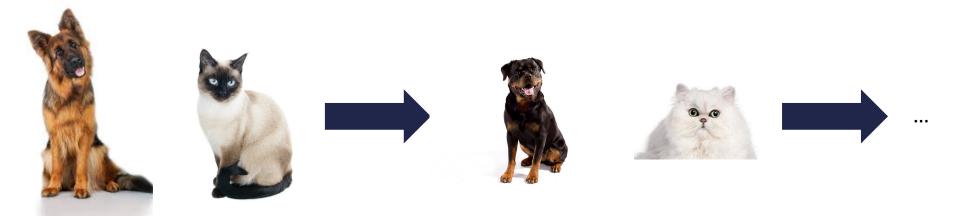
heuritech Sciences

Retraining everytime is not always possible:

- **Slow** \rightarrow companies with ever-growing datasets
- **Privacy** \rightarrow data is only available for a short time
- **Memory limitation** \rightarrow poor robot in the wild doesn't have peta of disk storage

Real world data is never independent and identically distributed (i.i.d.)

New samples [1] may appear:



HE)

9

Real world data is never independent and identically distributed (i.i.d.)

New classes [1] may appear:

Real world data is never independent and identically distributed (i.i.d.)

New samples and classes [1] may appear:

- 1. Initialize model f^0 2. Train f^0 on t = 0

- 1. Initialize model f^0
- 2. Train f^0 on t = 0
- 3. For t = 1; t < T; t + +
 - 1. Initialize model: $f^t \leftarrow f^{t-1}$

- 1. Initialize model f^0
- 2. Train f^0 on t = 0
- 3. For t = 1; t < T; t + +
 - 1. Initialize model: $f^t \leftarrow f^{t-1}$
 - 2. Add classifier weights to f^t

- 1. Initialize model f^0
- 2. Train f^0 on t = 0
- 3. For t = 1; t < T; t + +
 - 1. Initialize model: $f^t \leftarrow f^{t-1}$
 - 2. Add classifier weights to f^t
 - 3. Train f^t on t

- 1. Initialize model f^0
- 2. Train f^0 on t = 0
- 3. For t = 1; t < T; t + +
 - 1. Initialize model: $f^t \leftarrow f^{t-1}$
 - 2. Add classifier weights to f^t
 - 3. Train f^t on t
 - 4. Evaluate f^t on $\{1, \dots, t\}$

Evaluation

Single-head vs Multi-heads during evaluation [14]?

Evaluation

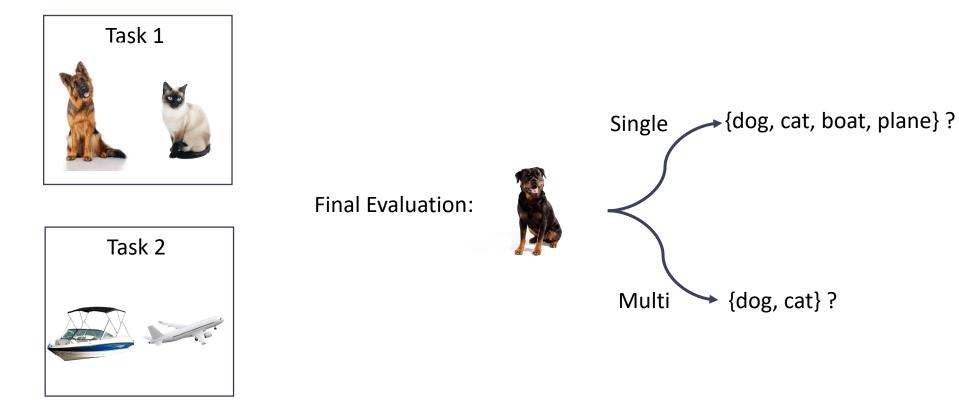
Single-head vs Multi-heads during evaluation [14]?

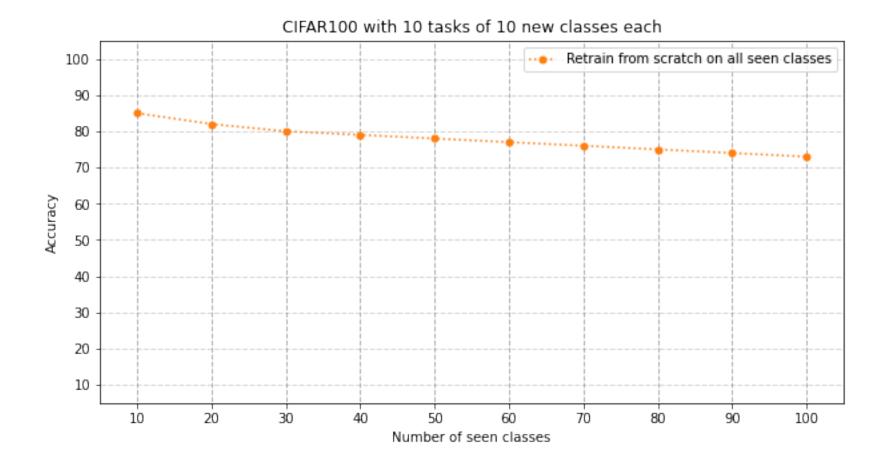
Final Evaluation:

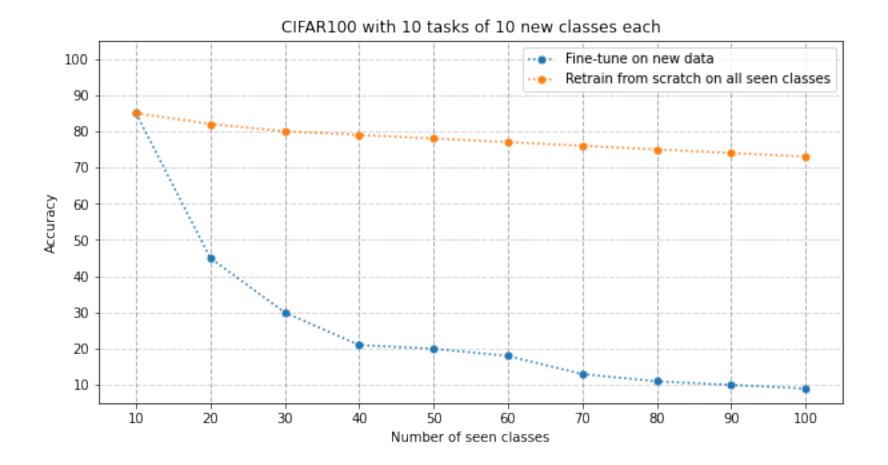
[14]: Chaudhry et al., Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence, 2018

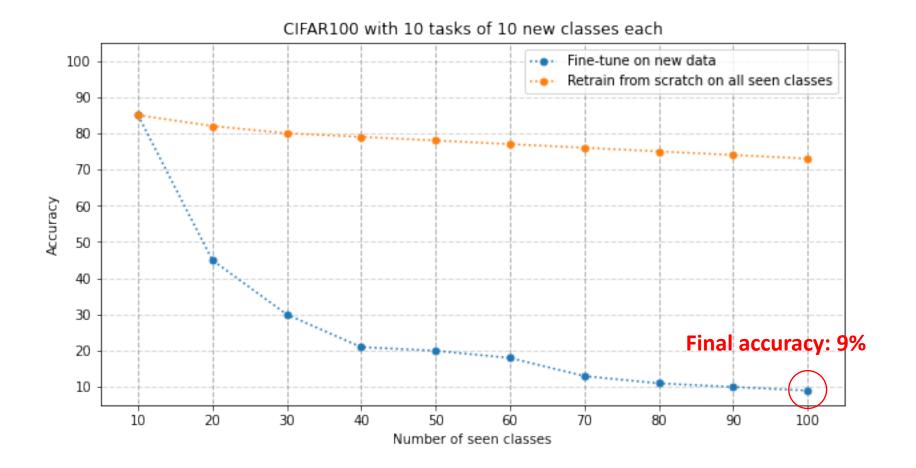
Evaluation

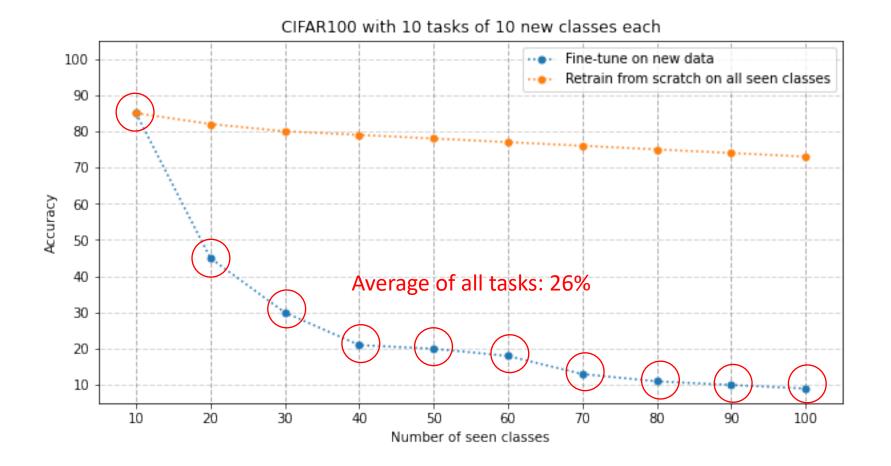
Single-head vs **Multi-heads** during evaluation [14]?

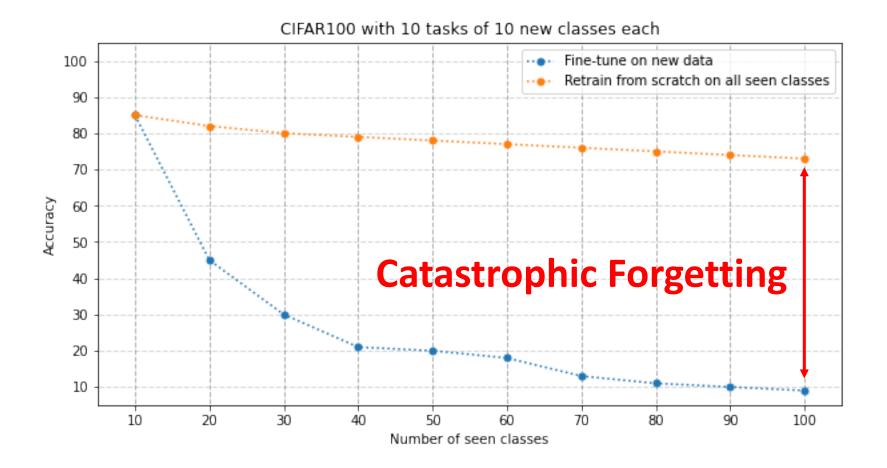












How to Solve it?

Rehearsal
 Constraints
 Sub-networks
 Classifier Correction

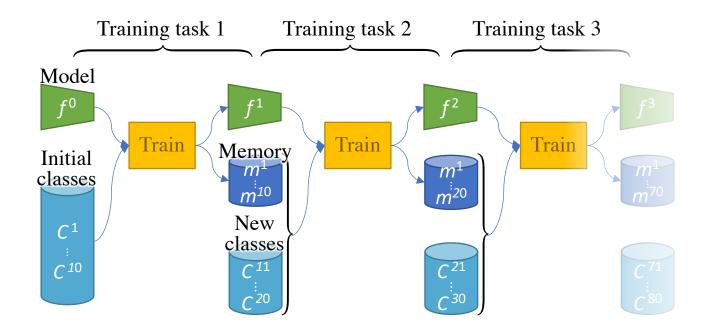
1. Rehearsal

Constraints
 Sub-networks

4. Classifier Correction

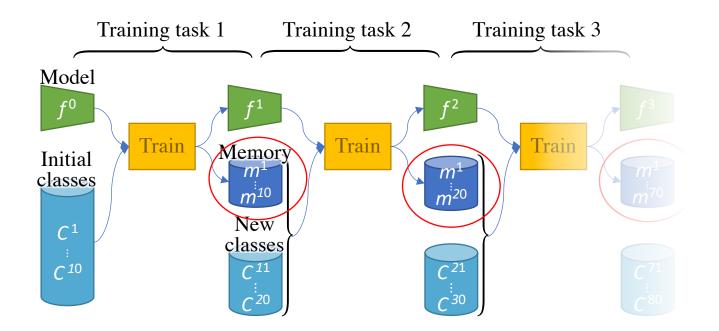
Replay a limited amount of previous data

e.g. iCaRL [3]



Replay a limited amount of previous data

e.g. iCaRL [3]

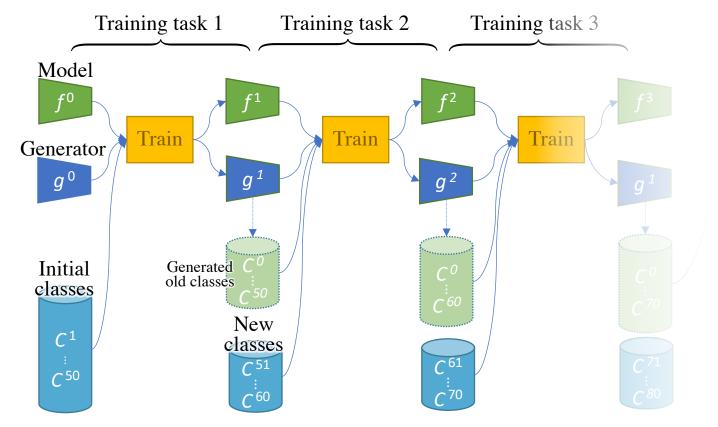


How

1. Rehearsal

Replay a limited amount of previous data

e.g. DGR [15]



[15]: Shin et al., Continual Learning with Deep Generative Replay, 2017

1. Rehearsal

Generate a limited amount of previous data

Training task 1 Training task 2 Training task 3 Model **f**⁰ F 2 Train Train Train Generator *g*⁰ *g*¹ g 2 Generated old classes Initial classes New C^1 classes C 51 C⁶¹ C^{50} C^{+70}

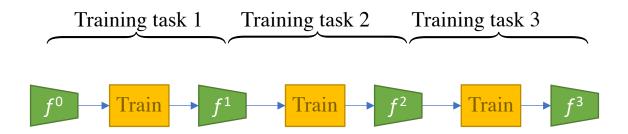
e.g. DGR [15]

[15]: Shin et al., Continual Learning with Deep Generative Replay, 2017

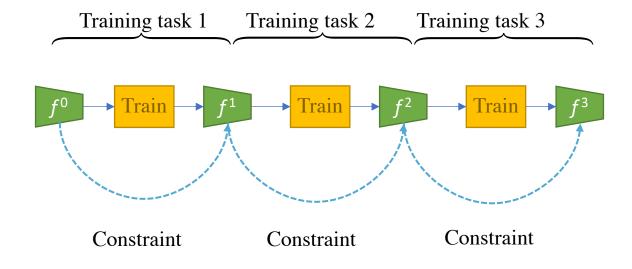
1. Rehearsal **2. <u>Constraints</u>** 3. Sub-networks

4. Classifier Correction

Constraints between f^{t-1} and f^t :



Constraints between f^{t-1} and f^t :

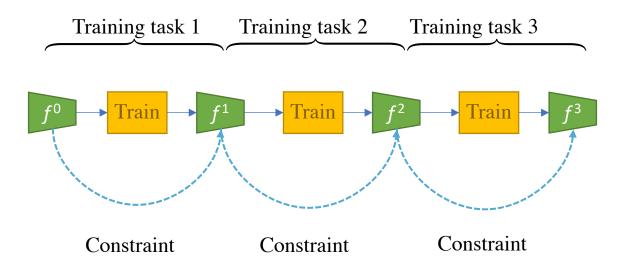


2. Constraints

Constraints between f^{t-1} and f^t :

On the weights (EWC [4])

$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_i \frac{\lambda}{2} F_i (\theta_i - \theta_{A,i}^*)^2$$

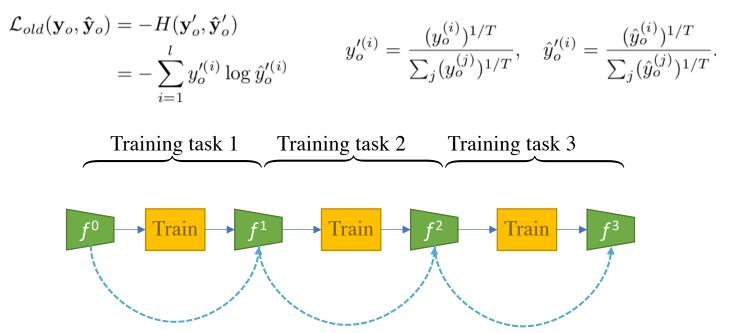


[4]: Kirkpatrick et al., Overcoming catastrophic forgetting in neural networks, 2017

2. Constraints

Constraints between f^{t-1} and f^t :

On the probabilities (LwF [5])



Constraint Constraint Constraint

[4]: Kirkpatrick et al., Overcoming catastrophic forgetting in neural networks, 2017

[5]: Li and Hoiem, Learning without forgetting, 2016

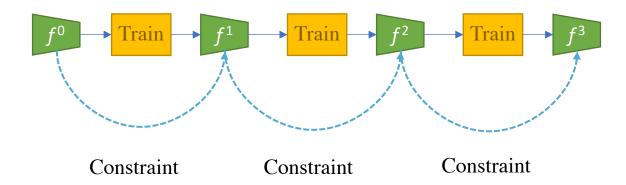
How

2. Constraints

Constraints between f^{t-1} and f^t :

On the gradients (GEM [6])

$$\langle g, g_k \rangle := \left\langle \frac{\partial \ell(f_\theta(x, t), y)}{\partial \theta}, \frac{\partial \ell(f_\theta, \mathcal{M}_k)}{\partial \theta} \right\rangle \ge 0, \text{ for all } k < t.$$



[4]: Kirkpatrick et al., Overcoming catastrophic forgetting in neural networks, 2017

[5]: Li and Hoiem, Learning without forgetting, 2016

[6]: Lopez-Paz and Ranzato, Gradient episodic memory for continual learning, 2017

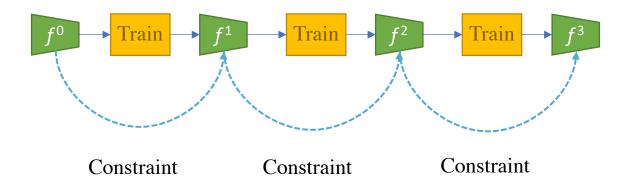
2. Constraints

Constraints between f^{t-1} and f^t :

On the features (PODNet [7])

$$\mathcal{L}_{ ext{POD-width}}(\mathbf{h}_{\ell}^{t-1},\mathbf{h}_{\ell}^{t}) = \sum_{c=1}^{C}\sum_{h=1}^{H}\left\|\sum_{w=1}^{W}\mathbf{h}_{\ell,c,w,h}^{t-1} - \sum_{w=1}^{W}\mathbf{h}_{\ell,c,w,h}^{t}
ight\|^{2}$$

Training task 1 Training task 2 Training task 3



[4]: Kirkpatrick et al., Overcoming catastrophic forgetting in neural networks, 2017

[5]: Li and Hoiem, Learning without forgetting, 2016

[6]: Lopez-Paz and Ranzato, Gradient episodic memory for continual learning, 2017

[7]: Douillard et al., PODNet: Pooled Outputs Distillation for small-tasks incremental learning, 2020

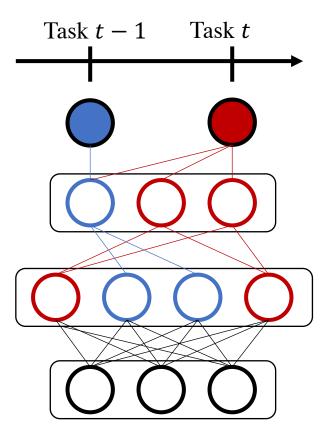
Rehearsal Constraints Sub-networks Classifier Correction

3. Sub-networks

One **sub-network** per task

Often requires in inference the **task id** to select the taskspecific sub-network.

Sub-network can be uncovered via evolutionary algorithms (PathNet [8]), sparsity (Neural Pruning [9]), or learned masks (CPG [10]).



Two sub-networks \bigcirc & \bigcirc can co-exist in the same network

[8]: Fernando et al., PathNet: Evolution Channels Gradient Descent in Super Neural Networks , 2017

[9]: Golkar et al., Continual learning via neural pruning, 2019

[10]: Hung et al., Compacting, picking and growing for unforgetting continual learning, 2019

Rehearsal Constraints Sub-networks Classifier Correction

Classifier is **biased** towards new classes

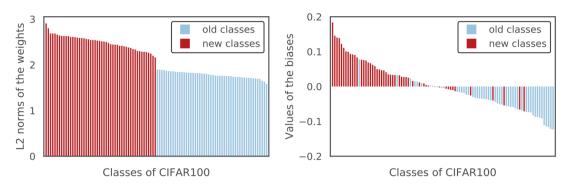
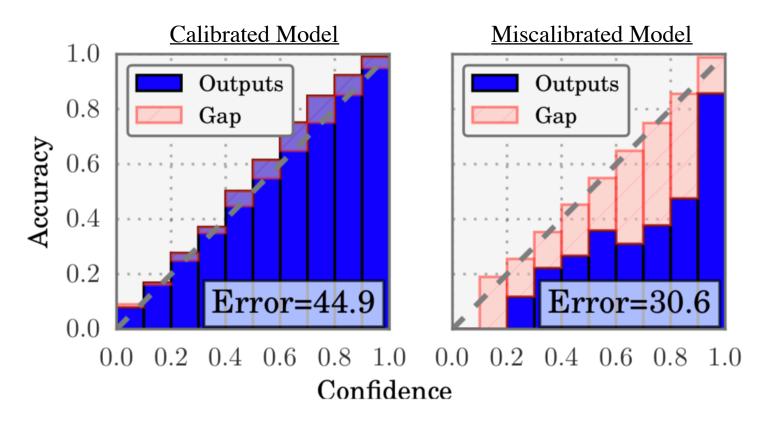


Figure 3. Visualization of the weights and biases in the last layer for old and new classes. The results come from the incremental setting of CIFAR100 (1 phase) by iCaRL [29].

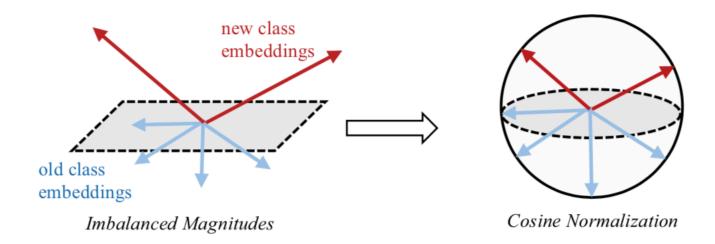
Classifier is **biased** towards new classes

Can be recalibrated (Bic [11])



Classifier is **biased** towards new classes

Or normalized (LUCIR [12])



[11]: Wu et al., Large scale incremental learning, 2019[12]: Hou et al., Learning an unified classifier incrementally via rebalancing, 2019

Two of our publications

PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning

Arthur Douillard^{1,2}, Matthieu Cord^{2,3}, Charles Ollion¹, Thomas Robert¹, and Eduardo Valle⁴

Rehearsal + Constraints

- Probabilities \rightarrow weak

1. PODNet, ECCV 2020

- Probabilities \rightarrow weak

1. PODNet, ECCV 2020

- Weights \rightarrow Slow and heavy

- Probabilities \rightarrow weak

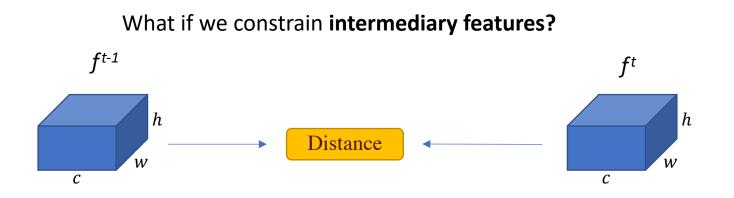
1. PODNet, ECCV 2020

- Weights \rightarrow Slow and heavy
- Gradients \rightarrow Very slow

- Probabilities \rightarrow weak

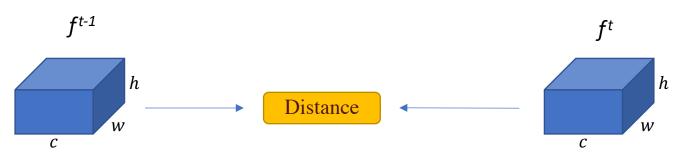
1. PODNet, ECCV 2020

- Weights \rightarrow Slow and heavy
- Gradients \rightarrow Very slow



1. PODNet, ECCV 2020

What if we constrain intermediary features?

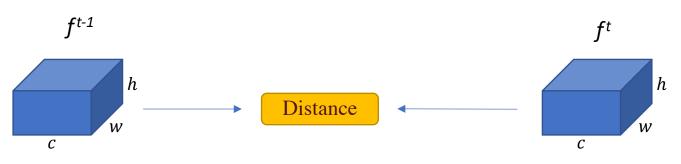


Not working!

Loss	NME	CNN
None	53.29	52.98
POD-pixels	49.74	52.34

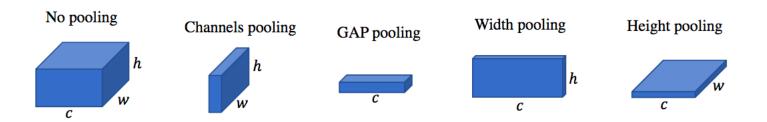
1. PODNet, ECCV 2020

What if we constrain intermediary features?

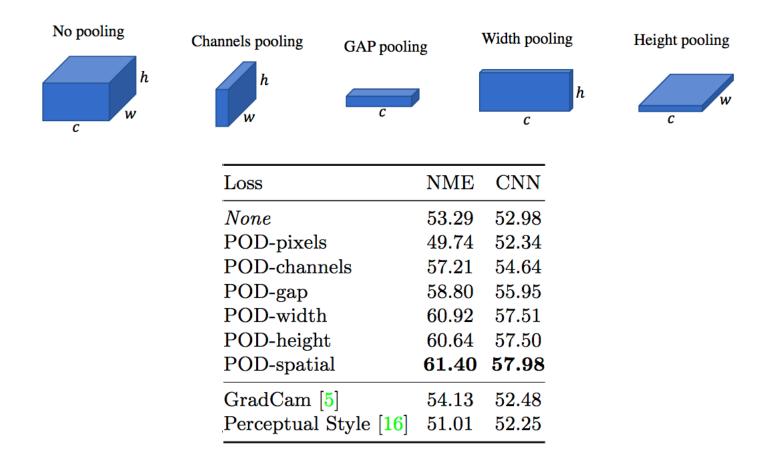


- Too much constraints ($C \times W \times H$)
- Too sensitive to outliers

Solution: matching statistics instead exact pixels



Solution: matching statistics instead exact pixels



50 classes + 5 x 10 classes

	CIFAR100	
New classes per step		$5 ext{ steps} 10$
<i>iCaRL</i> * [33]		57.17
iCaRL		58.08 ± 0.59
BiC [38]		56.86 ± 0.46
$UCIR (NME)^* [14]$		63.12
UCIR (NME) [14]		63.63 ± 0.87
$UCIR (CNN)^* [14]$		63.42
UCIR (CNN) [14]		64.01 ± 0.91
PODNet (NME)		64.48 ± 1.32
PODNet (CNN)		64.83 ± 0.98

50 classes + 10 x 5 classes

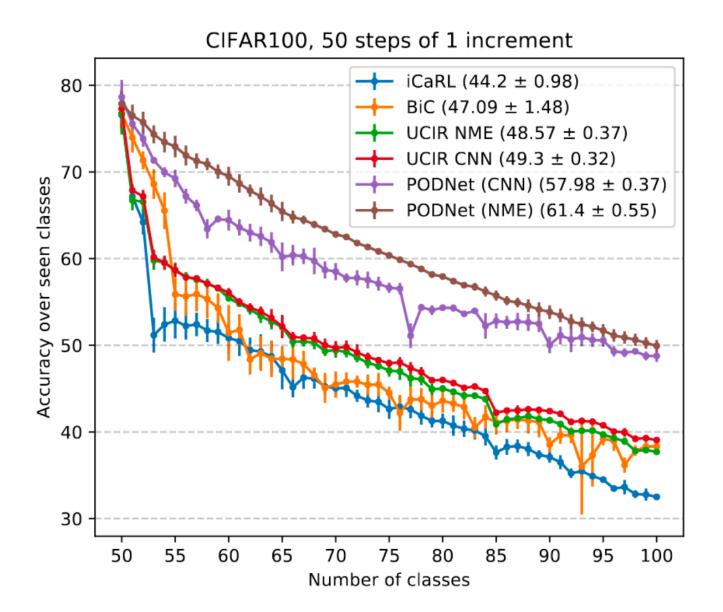
	CIFAR100		
	$10 { m steps}$	$5 { m steps}$	
New classes per step	5	10	
iCaRL* [33]	52.57	57.17	
iCaRL	53.78 ± 1.16	58.08 ± 0.59	
BiC [38]	53.21 ± 1.01	56.86 ± 0.46	
$UCIR (NME)^* [14]$	60.12	63.12	
UCIR (NME) $[14]$	60.83 ± 0.70	63.63 ± 0.87	
$UCIR(CNN)^*$ [14]	60.18	63.42	
UCIR (CNN) [14]	61.22 ± 0.69	64.01 ± 0.91	
PODNet (NME)	64.03 ± 1.30	64.48 ± 1.32	
PODNet (CNN)	$\textbf{63.19} \pm \textbf{1.16}$	64.83 ± 0.98	

50 classes + 25 x 2 classes

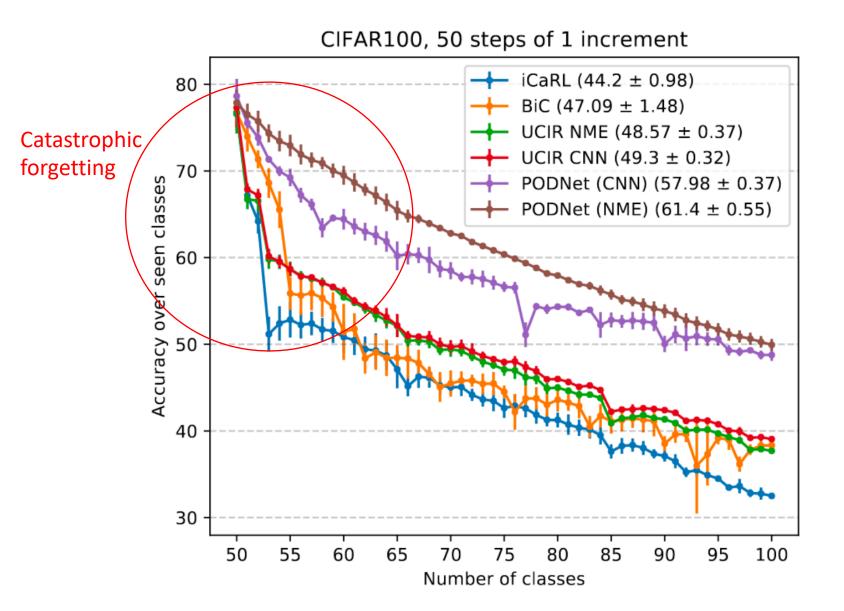
	CIFAR100				
	$25 { m \ steps}$	$10 { m steps}$	$5 { m steps}$		
New classes per step	2	5	10		
iCaRL* [33]	_	52.57	57.17		
iCaRL	50.60 ± 1.06	53.78 ± 1.16	58.08 ± 0.59		
BiC [38]	48.96 ± 1.03	53.21 ± 1.01	56.86 ± 0.46		
$UCIR (NME)^* [14]$		60.12	63.12		
UCIR (NME) $[14]$	56.82 ± 0.19	60.83 ± 0.70	63.63 ± 0.87		
$UCIR(CNN)^*$ [14]		60.18	63.42		
UCIR (CNN) [14]	57.57 ± 0.23	61.22 ± 0.69	64.01 ± 0.91		
PODNet (NME)	${\bf 62.71 \pm 1.26}$	64.03 ± 1.30	$\textbf{64.48} \pm \textbf{1.32}$		
PODNet (CNN)	60.72 ± 1.36	$\textbf{63.19} \pm \textbf{1.16}$	64.83 ± 0.98		

50 classes + 50 x 1 classes

	CIFAR100			
	$50 { m \ steps}$	$25 { m \ steps}$	$10 { m steps}$	$5 { m steps}$
New classes per step	1	2	5	10
<i>iCaRL</i> * [33]			52.57	57.17
iCaRL	44.20 ± 0.98	50.60 ± 1.06	53.78 ± 1.16	58.08 ± 0.59
BiC [38]	47.09 ± 1.48	48.96 ± 1.03	53.21 ± 1.01	56.86 ± 0.46
$UCIR (NME)^* [14]$		—	60.12	63.12
UCIR (NME) $[14]$	48.57 ± 0.37	56.82 ± 0.19	60.83 ± 0.70	63.63 ± 0.87
$UCIR (CNN)^* [14]$			60.18	63.42
UCIR (CNN) [14]	49.30 ± 0.32	57.57 ± 0.23	61.22 ± 0.69	64.01 ± 0.91
PODNet (NME)	61.40 ± 0.68	$\textbf{62.71} \pm \textbf{1.26}$	64.03 ± 1.30	64.48 ± 1.32
PODNet (CNN)	$\textbf{57.98} \pm \textbf{0.46}$	$\textbf{60.72} \pm \textbf{1.36}$	$\textbf{63.19} \pm \textbf{1.16}$	64.83 ± 0.98



1. PODNet, ECCV 2020



PLOP: Learning without Forgetting for Continual Semantic Segmentation

Arthur Douillard

Yifu Chen

Arnaud Dapogny

Matthieu Cord

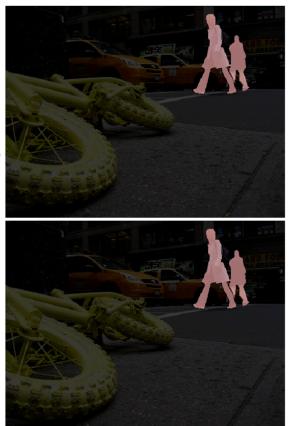
Constraints + Pseudo-labeling



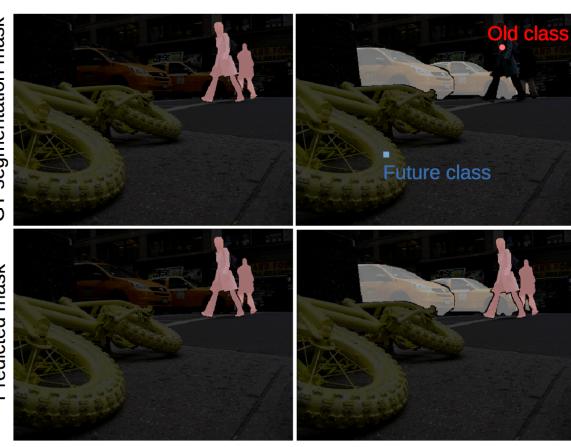
Semantic Segmentation \rightarrow each pixel is labeled

Semantic Segmentation \rightarrow each pixel is labeled

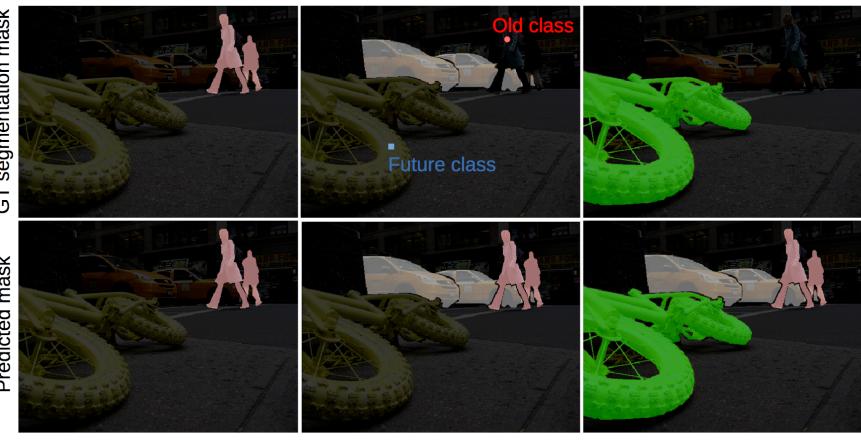
Continual Semantic Segmentation?



[13]: Cermelli et al., Modeling the Background for Incremental in Semantic Segmentation, 2020



step t=1

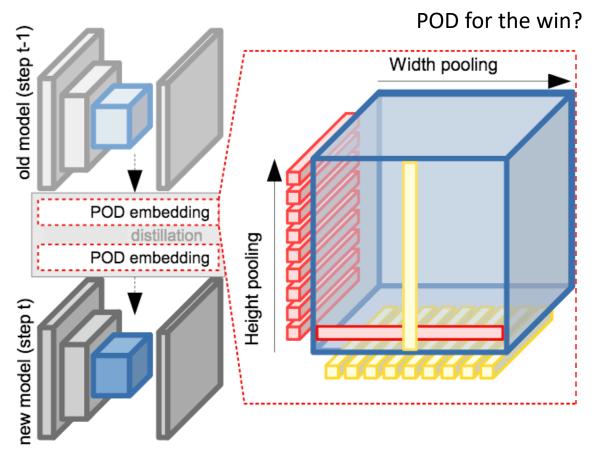


Problems:

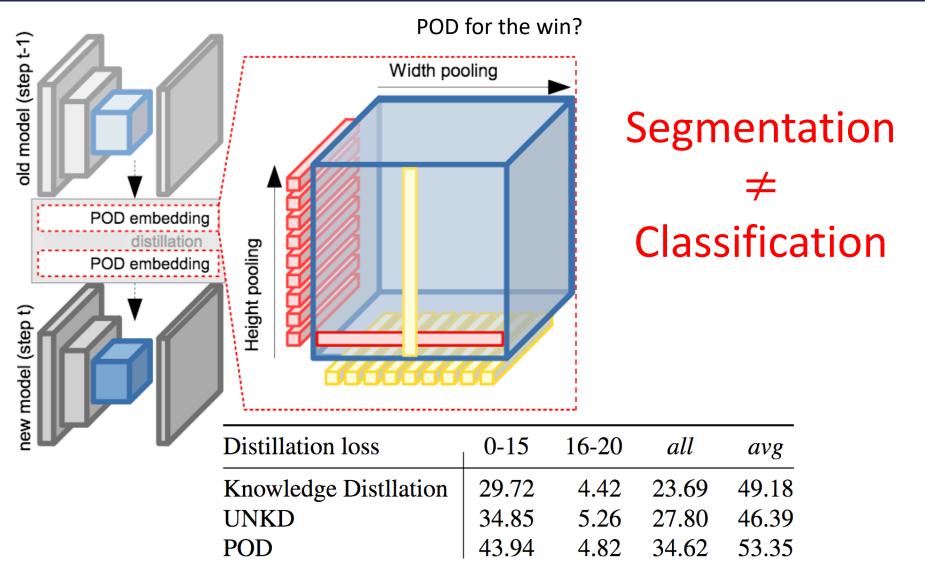
- Forgetting is particularly strong
- Images at task t are partially labeled

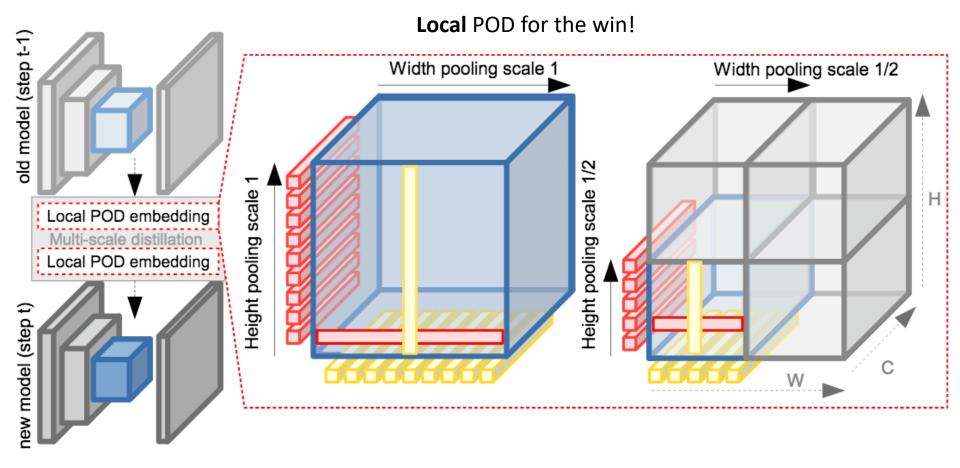
Problems:

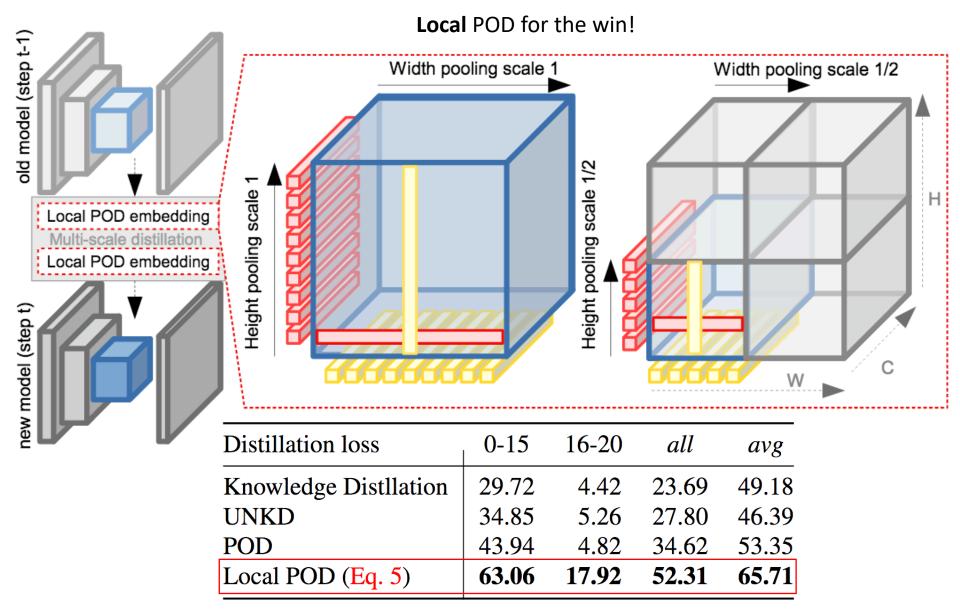
- Forgetting is particularly strong
- Images at task *t* are partially labeled



POD embedding distillation POD embedding	Width por	for the w	/in?		
	Distillation loss	0-15	16-20	all	avg
	Knowledge Distllation	29.72	4.42	23.69	49.18
	UNKD	34.85	5.26	27.80	46.39
	POD	43.94	4.82	34.62	53.35







Problems:

- Forgetting is particularly strong
- Images at task t are partially labeled

2. PLOP

GT

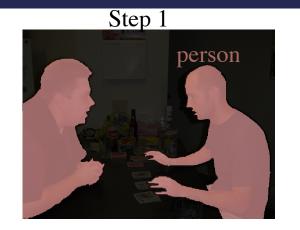
74

2. PLOP



Current Predictions

2. PLOP

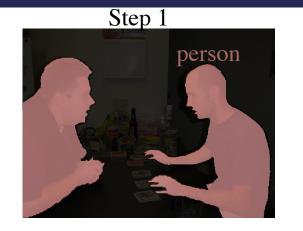


C

Current Predictions

2. PLOP

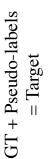
77



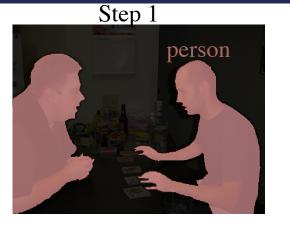
C

2. PLOP

C



GT



ΗΞ

heuritech Sciences sorbonne université

78

2. PLOP

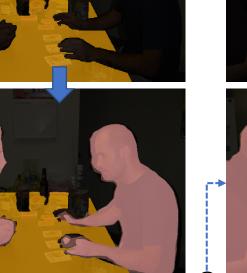
GT

GT + Pseudo-labels = Target

Step 1

person

Step 2



ΗΞ

heuritech Sciences sorbonne université

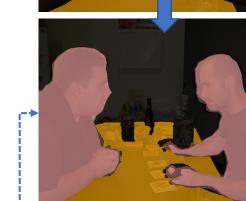
2. PLOP

GT

GT + Pseudo-labels = Target

Step 1

person



table

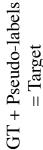
Step 2

ΗΞ

heuritech Sciences sorbonne université

2. PLOP

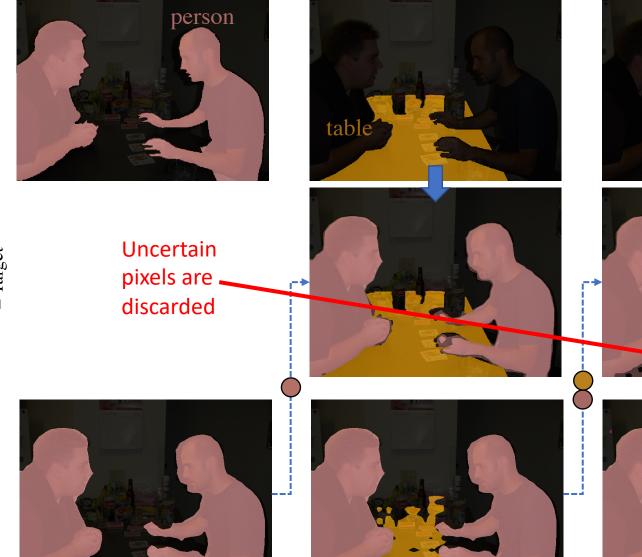
Step 1



GT

= Target

Current Predictions



Discarding low-confidence samples to avoid overpredicting old classes

Pseudo-labeling	1-15	16-20	all	avg
Naive	68.28	10.79	54.59	66.77
Threshold 0.90	56.63	10.65	54.06	66.43
Median	66.28	11.25	53.18	65.91
Entropy [65]	63.06	17.92	52.31	65.71

UNCE (CVPR 2020) merges predictions of old classes with background

Classification loss	1-15	16-20	all	avg
CE only on new	12.95	2.54	10.47	47.02
CE	33.80	4.67	26.87	50.79
UNCE	48.46	4.82	38.62	53.19
Pseudo (Eq. 8)	63.06	17.92	52.31	65.71
Pseudo-Oracle	63.69	23.35	54.09	66.05

Pascal-VOC (20 classes) experiments

	19-1 (2 tasks)				15-5 (2 tasks)				
Method	1-19	20	all	avg	1-15	16-20	all	avg	
EWC [†] [36]	26.90	14.00	26.30		24.30	35.50	27.10		
LwF-MC [†] [54]	64.40	13.30	61.90		58.10	35.00	52.30		
ILT [†] [49]	67.10	12.30	64.40		66.30	40.60	59.90		
ILT [49]	67.75	10.88	65.05	71.23	67.08	39.23	60.45	70.37	
MiB [†] [7]	70.20	22.10	67.80		75.50	49.40	69.00		
MiB [7]	71.43	23.59	69.15	73.28	76.37	49.97	70.08	75.12	
PLOP	75.35	37.35	73.54	75.47	75.73	51.71	70.09	75.19	

Pascal-VOC (20 classes) experiments

	19-1 (2 tasks)				15-5 (2 tasks)				15-1 (6 tasks)			
Method	1-19	20	all	avg	1-15	16-20	all	avg	1-15	16-20	all	avg
EWC [†] [<mark>36</mark>]	26.90	14.00	26.30		24.30	35.50	27.10		0.30	4.30	1.30	
LwF-MC [†] [54]	64.40	13.30	61.90		58.10	35.00	52.30		6.40	8.40	6.90	
ILT [†] [49]	67.10	12.30	64.40		66.30	40.60	59.90		4.90	7.80	5.70	
ILT [49]	67.75	10.88	65.05	71.23	67.08	39.23	60.45	70.37	8.75	7.99	8.56	40.16
MiB [†] [7]	70.20	22.10	67.80		75.50	49.40	69.00		35.10	13.50	29.70	
MiB [7]	71.43	23.59	69.15	73.28	76.37	49.97	70.08	75.12	34.22	13.50	29.29	54.19
PLOP	75.35	37.35	73.54	75.47	75.73	51.71	70.09	75.19	65.12	21.11	54.64	67.21

2. PLOP

MiB

PLOP

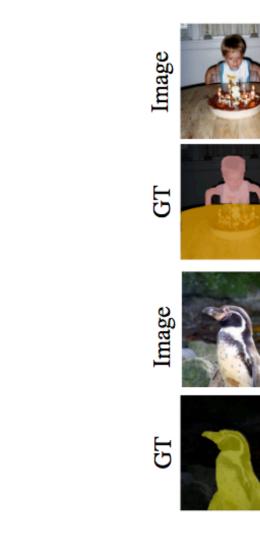
MiB

PLOP

Step 1

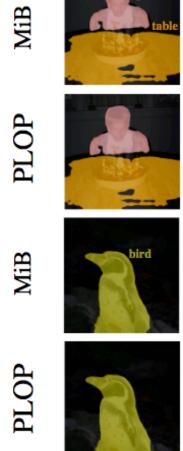
person

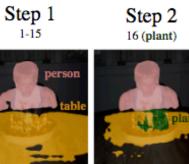
bird

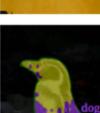


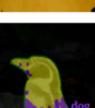
86

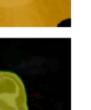
2. PLOP







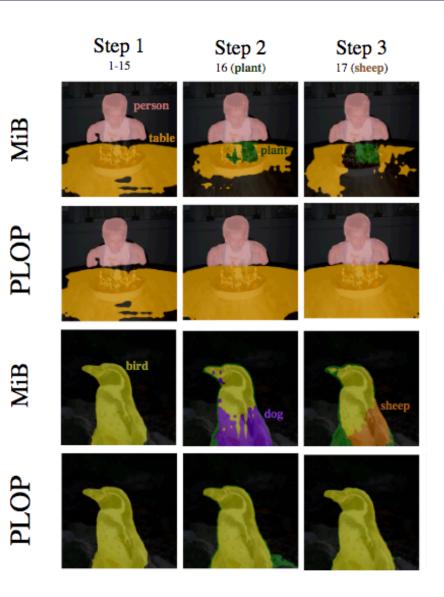




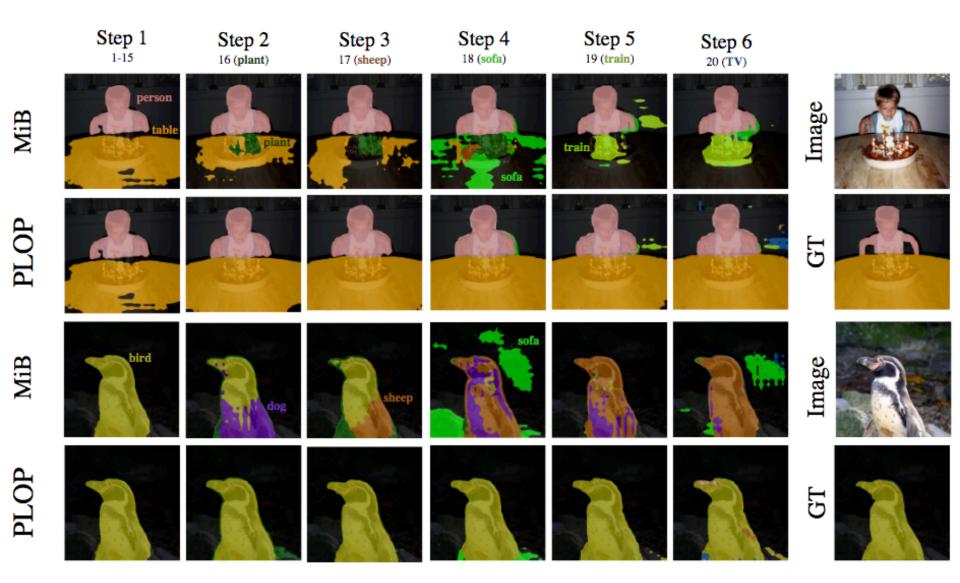
Image

E

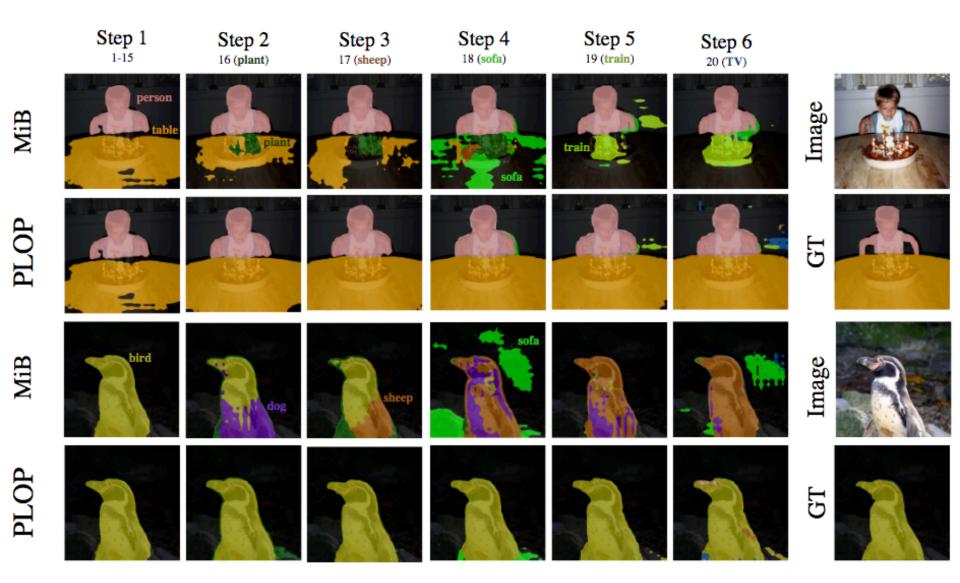
2. PLOP



2. PLOP



2. PLOP



2. PLOP

When a class appear only latter in the image \rightarrow background shift

Step 1 Step 5 Step 6 1-15 19 (train) 20 (TV) GJ erson train MiB PLOP

What are your questions?

References

References

References

- [1]: Lomonaco and Maltoni, CORe50: a New Dataset and Benchmark for Continuous Object Recognition, 2017
- [2]: Robbins, Catastrophic forgetting, rehearsal and pseudorehearsal, 1992
- [3]: Rebuffi et al., iCaRL: Incremental Classifier and Representation Learning, 2017
- [4]: Kirkpatrick et al., Overcoming catastrophic forgetting in neural networks, 2017
- [5]: Li and Hoiem, Learning without forgetting, 2016
- [6]: Lopez-Paz and Ranzato, Gradient episodic memory for continual learning, 2017
- [7]: Douillard et al., PODNet: Pooled Outputs Distillation for small-tasks incremental learning, 2020
- [8]: Fernando et al., PathNet: Evolution Channels Gradient Descent in Super Neural Networks, 2017
- [9]: Golkar et al., Continual learning via neural pruning, 2019
- [10]: Hung et al., Compacting, picking and growing for unforgetting continual learning, 2019
- [11]: Wu et al., Large scale incremental learning, 2019
- [12]: Hou et al., Learning an unified classifier incrementally via rebalancing, 2019
- [13]: Cermelli et al., Modeling the Background for Incremental in Semantic Segmentation, 2020
- [14]: Chaudhry et al., Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence, 2018
- [15]: Shin et al., Continual Learning with Deep Generative Replay, 2017