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Who am I?



Brief Bio
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PhD student at Sorbonne with Prof. Matthieu Cord since July 2019

Research Scientist at Heuritech

Teacher at EPITA

… and an ex-intern at Dataiku



What is Continual Learning?
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Data independent and identically distributed (iid) assumption

…f

Train once Evaluate on a 
fixed test set
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Data independent and identically distributed (iid) assumption

…f

Retrain from 
scratch

Evaluate on a 
fixed test set
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Retraining everytime is not always possible:

- Slow à companies with ever-growing datasets
- Privacy à data is only available for a short time
- Memory limitation à poor robot in the wild doesn’t have peta of disk storage
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Real world data is never independent and identically distributed (i.i.d.)

New samples [1] may appear:

…

[1]: Lomonaco and Maltoni, CORe50: a New Dataset and Benchmark for Continuous Object Recognition, 2017
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Real world data is never independent and identically distributed (i.i.d.)
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…

[1]: Lomonaco and Maltoni, CORe50: a New Dataset and Benchmark for Continuous Object Recognition, 2017
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Real world data is never independent and identically distributed (i.i.d.)

New samples and classes [1] may appear:

…

[1]: Lomonaco and Maltoni, CORe50: a New Dataset and Benchmark for Continuous Object Recognition, 2017
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1. Initialize model 𝑓"
2. Train 𝑓" on 𝑡 = 0
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Protocol
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1. Initialize model 𝑓"
2. Train 𝑓" on 𝑡 = 0
3. For 𝑡 = 1; 𝑡 < 𝑇; 𝑡 + +

1. Initialize model: 𝑓* ← 𝑓*,-
2. Add classifier weights to 𝑓*
3. Train 𝑓* on 𝑡
4. Evaluate 𝑓* on 1, … , 𝑡

Protocol



Evaluation
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Single-head vs Multi-heads during evaluation [14]?

[14]: Chaudhry et al., Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence, 2018

Task 1

Task 2
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Single-head vs Multi-heads during evaluation [14]?

[14]: Chaudhry et al., Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence, 2018
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Single-head vs Multi-heads during evaluation [14]?

[14]: Chaudhry et al., Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence, 2018

Task 1

Task 2

Final Evaluation:

{dog, cat, boat, plane} ?

{dog, cat} ?

Single

Multi
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Final accuracy: 9%
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Average of all tasks: 26%



Example
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Catastrophic Forgetting



How to Solve it?



Broad Strategies
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1.Rehearsal
2.Constraints
3.Sub-networks
4.Classifier Correction



Broad Strategies

26How

1.Rehearsal
2.Constraints
3.Sub-networks
4.Classifier Correction



1. Rehearsal
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Replay a limited amount of previous data

e.g. iCaRL [3]

[3]: Rebuffi et al., iCaRL: Incremental Classifier and Representation Learning, 2017
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Replay a limited amount of previous data

e.g. DGR [15]

[15]: Shin et al., Continual Learning with Deep Generative Replay, 2017
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Generate a limited amount of previous data

e.g. DGR [15]

[15]: Shin et al., Continual Learning with Deep Generative Replay, 2017
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Constraints between 𝑓*,- and 𝑓*:

f 0 f 1Train Train f 2 Train f 3

Training task 1 Training task 2 Training task 3
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2. Constraints
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Constraints between 𝑓*,- and 𝑓*:

On the weights (EWC [4])

[4]: Kirkpatrick et al., Overcoming catastrophic forgetting in neural networks, 2017

f 0 f 1Train Train f 2 Train f 3

Training task 1 Training task 2 Training task 3

Constraint Constraint Constraint



2. Constraints
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Constraints between 𝑓*,- and 𝑓*:

On the probabilities (LwF [5])

[4]: Kirkpatrick et al., Overcoming catastrophic forgetting in neural networks, 2017
[5]: Li and Hoiem, Learning without forgetting, 2016

f 0 f 1Train Train f 2 Train f 3

Training task 1 Training task 2 Training task 3

Constraint Constraint Constraint



2. Constraints
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Constraints between 𝑓*,- and 𝑓*:

On the gradients (GEM [6])

[4]: Kirkpatrick et al., Overcoming catastrophic forgetting in neural networks, 2017
[5]: Li and Hoiem, Learning without forgetting, 2016
[6]: Lopez-Paz and Ranzato, Gradient episodic memory for continual learning, 2017

f 0 f 1Train Train f 2 Train f 3

Training task 1 Training task 2 Training task 3

Constraint Constraint Constraint
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Constraints between 𝑓*,- and 𝑓*:

On the features (PODNet [7])

[4]: Kirkpatrick et al., Overcoming catastrophic forgetting in neural networks, 2017
[5]: Li and Hoiem, Learning without forgetting, 2016
[6]: Lopez-Paz and Ranzato, Gradient episodic memory for continual learning, 2017
[7]: Douillard et al., PODNet: Pooled Outputs Distillation for small-tasks incremental learning, 2020

f 0 f 1Train Train f 2 Train f 3

Training task 1 Training task 2 Training task 3

Constraint Constraint Constraint
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1.Rehearsal
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3.Sub-networks
4.Classifier Correction



3. Sub-networks
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[8]: Fernando et al., PathNet: Evolution Channels Gradient Descent in Super Neural Networks , 2017
[9]: Golkar et al., Continual learning via neural pruning, 2019
[10]: Hung et al., Compacting, picking and growing for unforgetting continual learning, 2019

Task 𝑡 − 1 Task 𝑡

Two sub-networks      &      can co-exist
in the same network 

One sub-network per task

Often requires in inference 
the task id to select the task-
specific sub-network.

Sub-network can be 
uncovered via evolutionary 
algorithms (PathNet [8]), 
sparsity (Neural Pruning [9]), or 
learned masks (CPG [10]).



Broad Strategies
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1.Rehearsal
2.Constraints
3.Sub-networks
4.Classifier Correction



4. Classifier Correction
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Classifier is biased towards new classes



4. Classifier Correction
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[11]: Wu et al., Large scale incremental learning, 2019

Classifier is biased towards new classes

Can be recalibrated (BiC [11])

Calibrated Model Miscalibrated Model



4. Classifier Correction
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[11]: Wu et al., Large scale incremental learning, 2019
[12]: Hou et al., Learning an unified classifier incrementally via rebalancing, 2019 

Classifier is biased towards new classes

Or normalized (LUCIR [12])



Two of our publications



1. PODNet, ECCV 2020
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Rehearsal + Constraints
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Problems of previous constraints:

- Probabilities à weak
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Problems of previous constraints:

- Probabilities à weak

- Weights à Slow and heavy

- Gradients à Very slow

What if we constrain intermediary features?

ℎ

𝑤
𝑐

f t-1

ℎ

𝑤
𝑐

f t

Distance



1. PODNet, ECCV 2020

50Publications

What if we constrain intermediary features?

ℎ

𝑤
𝑐

f t-1
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f t

Distance

Not working!
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What if we constrain intermediary features?

ℎ

𝑤
𝑐

f t-1

ℎ

𝑤
𝑐

f t

Distance

- Too much constraints (𝐶 ×𝑊 × 𝐻)

- Too sensitive to outliers



1. PODNet, ECCV 2020

52Publications

Solution: matching statistics instead exact pixels 
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Solution: matching statistics instead exact pixels 
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50 classes + 5 x 10 classes
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50 classes + 10 x 5 classes
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50 classes + 25 x 2 classes
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50 classes + 50 x 1 classes



1. PODNet, ECCV 2020
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1. PODNet, ECCV 2020
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Catastrophic 
forgetting



2. PLOP
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Constraints + Pseudo-labeling



2. PLOP
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Semantic Segmentation à each pixel is labeled



2. PLOP
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Semantic Segmentation à each pixel is labeled

Continual Semantic Segmentation?



2. PLOP
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[13]: Cermelli et al., Modeling the Background for Incremental in Semantic Segmentation, 2020
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[13]: Cermelli et al., Modeling the Background for Incremental in Semantic Segmentation, 2020
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[13]: Cermelli et al., Modeling the Background for Incremental in Semantic Segmentation, 2020
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Problems:

- Forgetting is particularly strong

- Images at task 𝑡 are partially labeled 
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POD for the win?



2. PLOP
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POD for the win?

Segmentation
≠

Classification



2. PLOP
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Local POD for the win!
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Local POD for the win!



2. PLOP
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Problems:

- Forgetting is particularly strong

- Images at task 𝒕 are partially labeled 
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Uncertain 
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Discarding low-confidence samples to avoid overpredicting old classes
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UNCE (CVPR 2020) merges predictions of old classes with background
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Pascal-VOC (20 classes) experiments
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Pascal-VOC (20 classes) experiments
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When a class appear only latter in the image à background shift



What are your questions?
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