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What is Continual Learning?
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Data independent and identically distributed (iid) assumption

…f

Retrain from 
scratch

Evaluate on a 
fixed test set
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Retraining everytime is not always possible:

- Slow à companies with ever-growing datasets
- Privacy à data is only available for a short time
- Memory limitation à poor robot in the wild doesn’t have peta of disk storage
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Real world data is rarely independent and identically distributed (i.i.d.)

New classes [1] may appear:

…

[1]: Lomonaco and Maltoni, CORe50: a New Dataset and Benchmark for Continuous Object Recognition, 2017
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1. Initialize model 𝑓"
2. Train 𝑓" on 𝑡 = 0
3. For 𝑡 = 1; 𝑡 < 𝑇; 𝑡 + +

1. Initialize model: 𝑓* ← 𝑓*,-
2. Add classifier weights to 𝑓*
3. Train 𝑓* on 𝑡
4. Evaluate 𝑓* on 1, … , 𝑡

Protocol
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Single-head vs Multi-heads during evaluation [14]?

[14]: Chaudhry et al., Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence, 2018

Task 1

Task 2
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Single-head vs Multi-heads during evaluation [14]?

[14]: Chaudhry et al., Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence, 2018

Task 1

Task 2

Final Evaluation:

{dog, cat, boat, plane} ?

{dog, cat} ?

Single

Multi



Example

15What



Example

16What



Example

17What

Final accuracy: 9%
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Average of all tasks: 26%
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Catastrophic Forgetting



How to Solve it?
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f 0 f 1
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Memory

f 2
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⋮

m20

Train

C 21
⋮
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f 3
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m70

C 71
⋮

C 80

Training task 1 Training task 2 Training task 3

Replay a limited amount of previous data

e.g. iCaRL [3]

[3]: Rebuffi et al., iCaRL: Incremental Classifier and Representation Learning, 2017
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[15]: Shin et al., Continual Learning with Deep Generative Replay, 2017
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⋮
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Train

Initial 
classes

Model

Train

C 51
⋮

C 60

New 
classes

f 2

Train

C 61
⋮

C 70

f 3

Training task 1 Training task 2 Training task 3

g 0

Generator
g 1 g 2 g 1

C 0
⋮

C 50

Generated 
old classes C 0

⋮
C 60

C 0
⋮

C 70

C 71
⋮

C 80

Generate a limited amount of previous data

e.g. DGR [15]
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1.Rehearsal
2.Constraints
3.Architecture
4.Classifier Correction



2. Constraints

26How

Constraints between 𝑓*,- and 𝑓*:

f 0 f 1Train Train f 2 Train f 3

Training task 1 Training task 2 Training task 3
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Constraints between 𝑓*,- and 𝑓*:

On the weights (EWC [4])
On the probabilities (LwF [5])

On the gradients (GEM [6])
On the features (PODNet [7])

[4]: Kirkpatrick et al., Overcoming catastrophic forgetting in neural networks, 2017
[5]: Li and Hoiem, Learning without forgetting, 2016
[6]: Lopez-Paz and Ranzato, Gradient episodic memory for continual learning, 2017
[7]: Douillard et al., PODNet: Pooled Outputs Distillation for small-tasks incremental learning, 2020

f 0 f 1Train Train f 2 Train f 3

Training task 1 Training task 2 Training task 3

Constraint Constraint Constraint
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1.Rehearsal
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3.Architecture
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[8]: Fernando et al., PathNet: Evolution Channels Gradient Descent in Super Neural Networks , 2017
[9]: Golkar et al., Continual learning via neural pruning, 2019
[10]: Hung et al., Compacting, picking and growing for unforgetting continual learning, 2019
[16] Veniat et al., Efficient Continual Learning with Modular Networks and Task-Drive Priors, 2021

Task 𝑡 − 1 Task 𝑡

Two sub-networks      &      can co-exist
in the same network 

One sub-network per task

Often requires in inference 
the task id to select the task-
specific sub-network.

Sub-network can be 
uncovered via evolutionary 
algorithms (PathNet [8]), 
sparsity (Neural Pruning [9]), or 
learned masks (CPG [10]).

Neurons can also be added 
(MNTDP-D [16])
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1.Rehearsal
2.Constraints
3.Architecture
4.Classifier Correction
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Classifier is biased towards new classes



4. Classifier Correction
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[11]: Wu et al., Large scale incremental learning, 2019

Classifier is biased towards new classes

Can be recalibrated (BiC [11] )

Calibrated Model Miscalibrated Model



4. Classifier Correction
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[11]: Wu et al., Large scale incremental learning, 2019
[12]: Hou et al., Learning an unified classifier incrementally via rebalancing, 2019 

Classifier is biased towards new classes

Or normalized (LUCIR [12])



Previous work:



PODNet , ECCV 2020
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- Multi-modal metric-based classifier
- Multi-stage features-based distillation loss (POD)

f t-1

L2

f t-1

L2



PODNet, ECCV 2020

37Previous work

Catastrophic 
forgetting

Good for long 
continual training



Learning without Forgetting
for 

Continual Semantic Segmentation



PLOP, CVPR 2021

39Continual Segmentation

Constraints + Pseudo-labeling



Segmentation
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Semantic Segmentation à each pixel is labeled



Continual?
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Semantic Segmentation à each pixel is labeled

Continual Semantic Segmentation?



Background shift
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[13]: Cermelli et al., Modeling the Background for Incremental in Semantic Segmentation, 2020
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[13]: Cermelli et al., Modeling the Background for Incremental in Semantic Segmentation, 2020



Background shift
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[13]: Cermelli et al., Modeling the Background for Incremental in Semantic Segmentation, 2020



Problems and weakness
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Problems:

- Forgetting is particularly strong
- Previous SotA only constrained final probabilities

- Images at task 𝒕 are partially labeled
- Previous SotA maximized the sum of the probabilities of background + old



Problem 1: Forgetting
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Problems:

- Forgetting is particularly strong

- Images at task 𝑡 are partially labeled 



Problem 1: Forgetting

47Continual Segmentation

POD?
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POD?



Problem 1: Forgetting

49Continual Segmentation

POD?

Segmentation
≠

Classification



Problem 1: Forgetting
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Local POD!



Problem 1: Forgetting

51Continual Segmentation

Local POD for the win!



Problem 1: Background shift
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Problems:

- Forgetting is particularly strong

- Images at task 𝒕 are partially labeled 
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Pseudo-labeling by 𝑓*,-
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UNCE (CVPR 2020) merges predictions of old classes with background



Different pseudo-labeling
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Pseudo-labelize all pixels that are ”background”



Different pseudo-labeling
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Pseudo-labelize all pixels that are ”background”

And confident enough



Different pseudo-labeling
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Pseudo-labelize all pixels that are ”background”

And entropy low enough

And adaptive sample weight



Experiments
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Pascal-VOC (20 classes) experiments
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Pascal-VOC (20 classes) experiments



Experiments
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Pascal-VOC (20 classes) experiments



Visuals

68Continual Segmentation

First, learn 15 classes



Visuals
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Learn the “plant” class



Visuals
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So far, it’s still OK



Visuals
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Catastrophic
forgetting



Visuals
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Visuals
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Visuals
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When a class appear only latter in the image



What are your questions?
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