
Confidential - Google DeepMind

DiLoCo
Distributed Low-Communication for
training Large Language Models

Arthur Douillard
Senior Research Scientist @ Google DeepMind
@ar_douillard

1

Feb 21, 2024, At Cohere For AI.

https://cohere.com/events/c4ai-Arthur-Douillard-2023

Confidential - Google DeepMind

Team Work

Bo Liu
work done as an intern

2

Confidential - Google DeepMind

Goals 1
3

Confidential - Google DeepMind

Parallelism Flavors

Device A Device B Device A Device B

Data Parallelism Tensor Parallelism

4

Confidential - Google DeepMind

Parallelism Flavors

Device A Device B

Data Parallelism

5

Confidential - Google DeepMind

Parallelism Flavors

Device A Device B

Data Parallelism

1. Compute per-batch loss on each device
2. Compute gradients on each device
3. All-reduce gradients & apply optimizer
4. Start anew from replicated parameters

Communication

6

Confidential - Google DeepMind

Parallelism Flavors

Device A Device B

⚠ Problem!

Communication at every training step

Hard to scale to non co-located devices

Communication

7

Confidential - Google DeepMind

Our vision

🤝 World-wide collaborative training of large-scale models

🎓 Universities could pool their resources together to
 train larger models

🥖 Even if each worker has little compute, pooling all
 those bread crumbs is a lot of compute

8

�� 🔬𝞹1 𝞹2

𝞹3

𝞹4�� 🔬

�� 🔬

�� 🔬

Confidential - Google DeepMind

Model 2
9

Confidential - Google DeepMind

Communicating less = Independent Optimization
A world-wide distributed training should communicates less often

Less communication requires independent optimization

That’s the whole gist of Federated Learning, that we push to an extreme.

10

t = 1
Replicas Training
for H inner steps

CommunicationPretrained Model

t = 2 t = 3
Replicas Training
for H inner steps

Communication …

Confidential - Google DeepMind

Communicating less = Independent Optimization

Independent training with infrequent communication enables cross-country distributed training

11

t = 1
Replicas Training
for H inner steps

Pretrained Model

t = 2 t = 3
Replicas Training
for H inner steps

…

Communication Communication

Confidential - Google DeepMind

Communicating less = Independent Optimization

And even using different hardware types!

12

t = 1
Replicas Training
for H inner steps

Pretrained Model

t = 2 t = 3
Replicas Training
for H inner steps

…
 TPUv4
 V100

 TPUv5
 A100

 TPUv4
 V100

 TPUv5
 V100

Communication Communication

Confidential - Google DeepMind

The recipe 🍜

Start from an existing model (optional).

Have k workers, across the world.

Assign a data shard to each worker, iid or not.

And use two optimizers!

13

Confidential - Google DeepMind

The recipe 🍜

For every round of training-communication:

14

Confidential - Google DeepMind

The recipe 🍜

For every round of training-communication:

Train each worker in parallel,

For H training steps

15

Confidential - Google DeepMind

The recipe 🍜

Afterwards, compute an outer gradient.

While usually a gradient a gradient is an infinitesimal
difference,

this outer gradient is a delta in parameter space
across hundreds or thousands of training steps!

16

Confidential - Google DeepMind

The recipe 🍜

We can apply an optimization on this outer “gradient”!

If we use SGD(lr=1.0), this is model averaging (FedAvg)

17

Confidential - Google DeepMind

The recipe 🍜

We can apply an optimization on this outer gradient!

With SGD(lr=1.0, momentum=0.9, nesterov=True),
we can speed up training.

18

Confidential - Google DeepMind

Results
We compare 3 baselines, with different amount of communication, compute/data, and time spent.

19

Confidential - Google DeepMind

Results
We compare 3 baselines, with different amount of communication, compute/data, and time spent.

DiLoCo strikes the best tradeoff between time, communication cost and generalization performance.

Given 8 replicas, N the number of steps, and H the communication frequency in steps

20

Confidential - Google DeepMind

DiLoCo’s outer optimizers

21

Outer SGD = FedAvg
→ McMahan et al. 2016,
Communication-Efficient Learning of Deep
Networks from Decentralized Data

Outer Adam = FedOpt
→ Reddi et al. 2020,
Adaptive Federated Optimization

We found empirically that Nesterov is:
● Better
● More stable across HPs
● And allowed us to scale to O(100)

inner steps while previous literature
usually is O(10).

Confidential - Google DeepMind

Resiliency to communication frequency

If bandwidth is small, reduce
communication.

Amortize time spent in synchronization!

Typical Federated Learning set up: O(10)
inner steps.
We work with one or two orders of
magnitude more.

22

Confidential - Google DeepMind

Resiliency to compute availability

How about if some workers go down, or become
available at a later time?

We tried varying the number of workers across
time…

23

Confidential - Google DeepMind

Resiliency to compute availability

How about if some workers go down, or become
available at a later time?

We tried varying the number of workers across
time…

24

Number of replica per phase.

Confidential - Google DeepMind

Resiliency to compute availability

How about if some workers go down, or become
available at a later time?

All variations are close to the “ideal” Constant
Distributed, where the number of workers is
always 8.

PS: changing the outer learning rate should probably improve results

25

Confidential - Google DeepMind

Resiliency to compute availability

How about if some workers go down, or become
available at a later time?

Convergence is sensitive to the total amount
of compute, not to how this is spread over
time.

26

Name Total
Compute PPL

Constant 64 15.08

Doubling 48 15.27

Halving 48 15.23

Ramp Up 28 15.49

Ramp Down 28 15.44

Confidential - Google DeepMind

Further reducing communication cost

27

DiLoCo amortizes communication cost only communicating every 500 steps.

However, there is still, infrequently, a communication cost that can be problematic.

→ we experiment compressing our outer gradient by pruning it values. It seems to be fairly robust!

Confidential - Google DeepMind

Model Sizes

28

Model merging literature indicates that larger models are easier to merge/soup.

Preliminary experiments up to 400M scale indicates that it may be true for DiLoCo too.

Confidential - Google DeepMind

But wait we are waiting for laggers? 🐢 vs 🐇

A100 is twice faster than V100.

Being distributed is cool, but if we have to wait for laggers that’s a bit sad.

29

Confidential - Google DeepMind

Async 3
30

Bo Liu
Lead author of the async

during his internship

Confidential - Google DeepMind

Let’s make it async then easy peasy

Instead of waiting for all replicas to finish before synchronization, let each worker update the
global parameter as soon as it has completed its task.

31

Example with two replicas:

Fast devices

Slow devices

Confidential - Google DeepMind

Does async works out-of-the-box?

When dealing with heterogeneous
devices, it’s faster!

But with respect to the number of
updates, that’s quite worse despite using
as much data and compute.

32

Confidential - Google DeepMind

Let’s try async with the same speed/replica then

When all devices have the same speed, we
synchronize the global model one after the
other,

but there isn’t significant staleness between
updates…

→ even slight staleness in the outer gradient
 is harmful!

33

Confidential - Google DeepMind

Delayed Momentum Update

The culprit comes from the momentum of the outer optimizer.

Async works fine when using SGD w/o momentum as outer
optimizer.

34

Confidential - Google DeepMind

Delayed Momentum Update

The culprit comes from the momentum of the outer optimizer.

Async works fine when using SGD w/o momentum as outer
optimizer.

Our solution is to update the outer momentum only once in a
while, once the buffer of outer gradient is filled.

→ leading to more accurate outer momentum

35c=0 for best results

Confidential - Google DeepMind

What’s the results?

36

Given little staleness, Our method is as good as DiLoCo

Ours

Confidential - Google DeepMind

What’s the results?

37

But add more staleness by using different device types per replicas…

Ours

Confidential - Google DeepMind

What’s the results?

38

But add more staleness by using different device types per replicas…

Ours

Confidential - Google DeepMind

What’s the results?

39

Ours

… and our method is as good as DiLoCo per-step, but much faster w.r.t time!

Confidential - Google DeepMind

Open-source toy setting

40

We run our model distributed across the world thanks to Google infra.

To facilitate reproduction by the community we release a toy setting that can be
run in a colab, and that is faithful to the larger scale results!

Confidential - Google DeepMind

🤔 TL;DR

We propose a a communication efficient distributed training algorithm:
● With extremely infrequent synchronization (x500 less!)
● Experiments on language models up to 400M
● With actual real experiments done across the world, and not only on a toy setting
● And an asynchronous extension to handle heterogeneous devices

41

Confidential - Google DeepMind

Questions?
@ar_douillard

DiLoCo: arxiv.org/abs/2311.08105

Async-DiLoCo: arxiv.org/abs/2401.09135

42

https://arxiv.org/abs/2311.08105
https://arxiv.org/abs/2401.09135

Proprietary + Confidential

Appendix

Confidential - Google DeepMind

DiLoCo’s pretraining size

44

Confidential - Google DeepMind

DiLoCo’s number of replicas

45

Confidential - Google DeepMind

DiLoCo’s model sizes

46

Confidential - Google DeepMind

DiLoCo’s outer optimizers

47

Confidential - Google DeepMind

DiLoCo’s dropping communication

48

Confidential - Google DeepMind

DiLoCo’s outer gradient cosine similarity

49

Confidential - Google DeepMind

DiLoCo’s sparsification of outer gradients

50

