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Team Work

Bo Liu
work done as an intern
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Goals 1
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Parallelism Flavors

Device A Device B Device A Device B

Data Parallelism Tensor Parallelism
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Parallelism Flavors

Device A Device B

Data Parallelism
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Parallelism Flavors

Device A Device B

Data Parallelism

1. Compute per-batch loss on each device
2. Compute gradients on each device
3. All-reduce gradients & apply optimizer
4. Start anew from replicated parameters 

Communication
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Parallelism Flavors

Device A Device B

⚠ Problem!

Communication at every training step

Hard to scale to non co-located devices

Communication
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Our vision

🤝 World-wide collaborative training of large-scale models

🎓 Universities could pool their resources together to
     train larger models

🥖 Even if each worker has little compute, pooling all
     those bread crumbs is a lot of compute
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Model 2
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Communicating less = Independent Optimization
A world-wide distributed training should communicates less often

Less communication requires independent optimization

That’s the whole gist of Federated Learning, that we push to an extreme.
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t = 1
Replicas Training 
for H inner steps

CommunicationPretrained Model

t = 2 t = 3
Replicas Training 
for H inner steps

Communication …
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Communicating less = Independent Optimization

Independent training with infrequent communication enables cross-country distributed training
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t = 1
Replicas Training 
for H inner steps

Pretrained Model

t = 2 t = 3
Replicas Training 
for H inner steps
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Communicating less = Independent Optimization

And even using different hardware types!
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t = 1
Replicas Training 
for H inner steps

Pretrained Model

t = 2 t = 3
Replicas Training 
for H inner steps

…
 TPUv4
 V100

  TPUv5
  A100

 TPUv4
 V100

  TPUv5
  V100

Communication Communication
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The recipe 🍜

Start from an existing model (optional).

Have k workers, across the world.

Assign a data shard to each worker, iid or not.

And use two optimizers!
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The recipe 🍜

For every round of training-communication:
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The recipe 🍜

For every round of training-communication:

Train each worker in parallel,

For H training steps

15



Confidential - Google DeepMind

The recipe 🍜

Afterwards, compute an outer gradient.

While usually a gradient a gradient is an infinitesimal 
difference,

this outer gradient is a delta in parameter space 
across hundreds or thousands of training steps!
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The recipe 🍜

We can apply an optimization on this outer “gradient”!

If we use SGD(lr=1.0), this is model averaging (FedAvg)
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The recipe 🍜

We can apply an optimization on this outer gradient!

With SGD(lr=1.0, momentum=0.9, nesterov=True), 
we can speed up training.
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Results
We compare 3 baselines, with different amount of communication, compute/data, and time spent.
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Results
We compare 3 baselines, with different amount of communication, compute/data, and time spent.

DiLoCo strikes the best tradeoff between time, communication cost and generalization performance.

Given 8 replicas, N the number of steps, and H the communication frequency in steps
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DiLoCo’s outer optimizers
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Outer SGD = FedAvg
→ McMahan et al. 2016, 
Communication-Efficient Learning of Deep 
Networks from Decentralized Data

Outer Adam = FedOpt
→ Reddi et al. 2020, 
Adaptive Federated Optimization

We found empirically that Nesterov is:
● Better
● More stable across HPs
● And allowed us to scale to O(100) 

inner steps while previous literature 
usually is O(10).
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Resiliency to communication frequency

If bandwidth is small, reduce 
communication.

Amortize time spent in synchronization!

Typical Federated Learning set up: O(10) 
inner steps.
We work with one or two orders of 
magnitude more.
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Resiliency to compute availability

How about if some workers go down, or become 
available at a later time?

We tried varying the number of workers across 
time…

23



Confidential - Google DeepMind

Resiliency to compute availability

How about if some workers go down, or become 
available at a later time?

We tried varying the number of workers across 
time…

24

Number of replica per phase.
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Resiliency to compute availability

How about if some workers go down, or become 
available at a later time?

All variations are close to the “ideal” Constant 
Distributed, where the number of workers is 
always 8.

PS: changing the outer learning rate should probably improve results
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Resiliency to compute availability

How about if some workers go down, or become 
available at a later time?

Convergence is sensitive to the total amount 
of compute, not to how this is spread over 
time.
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Name Total 
Compute PPL

Constant 64 15.08

Doubling 48 15.27

Halving 48 15.23

Ramp Up 28 15.49

Ramp Down 28 15.44
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Further reducing communication cost
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DiLoCo amortizes communication cost only communicating every 500 steps.

However, there is still, infrequently, a communication cost that can be problematic.

→ we experiment compressing our outer gradient by pruning it values. It seems to be fairly robust!
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Model Sizes
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Model merging literature indicates that larger models are easier to merge/soup.

Preliminary experiments up to 400M scale indicates that it may be true for DiLoCo too.
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But wait we are waiting for laggers? 🐢 vs 🐇 

A100 is twice faster than V100.

Being distributed is cool, but if we have to wait for laggers that’s a bit sad.   
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Async 3
30

Bo Liu
Lead author of the async 

during his internship
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Let’s make it async then easy peasy

Instead of waiting for all replicas to finish before synchronization, let each worker update the 
global parameter as soon as it has completed its task.
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Example with two replicas:

Fast devices

Slow devices
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Does async works out-of-the-box?

When dealing with heterogeneous 
devices, it’s faster!

But with respect to the number of 
updates, that’s quite worse despite using 
as much data and compute.
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Let’s try async with the same speed/replica then

When all devices have the same speed, we 
synchronize the global model one after the 
other,

but there isn’t significant staleness between 
updates…

→ even slight staleness in the outer gradient
     is harmful!

33



Confidential - Google DeepMind

Delayed Momentum Update

The culprit comes from the momentum of the outer optimizer.

Async works fine when using SGD w/o momentum as outer 
optimizer.

34



Confidential - Google DeepMind

Delayed Momentum Update

The culprit comes from the momentum of the outer optimizer.

Async works fine when using SGD w/o momentum as outer 
optimizer.

Our solution is to update the outer momentum only once in a 
while, once the buffer of outer gradient is filled.

→ leading to more accurate outer momentum

35c=0 for best results



Confidential - Google DeepMind

What’s the results?
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Given little staleness, Our method is as good as DiLoCo 

Ours
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What’s the results?
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But add more staleness by using different device types per replicas…

Ours
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What’s the results?
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But add more staleness by using different device types per replicas…

Ours
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What’s the results?
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Ours

… and our method is as good as DiLoCo per-step, but much faster w.r.t time!
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Open-source toy setting
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We run our model distributed across the world thanks to Google infra.

To facilitate reproduction by the community we release a toy setting that can be 
run in a colab, and that is faithful to the larger scale results! 
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🤔 TL;DR

We propose a a communication efficient distributed training algorithm:
● With extremely infrequent synchronization (x500 less!)
● Experiments on language models up to 400M
● With actual real experiments done across the world, and not only on a toy setting
● And an asynchronous extension to handle heterogeneous devices
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Questions?
@ar_douillard

DiLoCo:               arxiv.org/abs/2311.08105

Async-DiLoCo:  arxiv.org/abs/2401.09135
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https://arxiv.org/abs/2311.08105
https://arxiv.org/abs/2401.09135
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DiLoCo’s pretraining size
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DiLoCo’s number of replicas
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DiLoCo’s model sizes
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DiLoCo’s outer optimizers
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DiLoCo’s dropping communication
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DiLoCo’s outer gradient cosine similarity
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DiLoCo’s sparsification of outer gradients
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