

Small-Task Incremental Learning

arXiv Preprint

Arthur Douillard Matthieu Cord Charles Ollion Thomas Robert Eduardo Valle

@Ar_Douillard arthurdouillard.com

22/05/2020

Who

Who

Who Are We

Arthur Douillard

1st year PhD student Sorbonne Université **Research Scientist**

Matthieu Cord

Professor Senior Research Scientist Valeo

Charles Ollion

Head of Research

Thomas Robert

Research Scientist

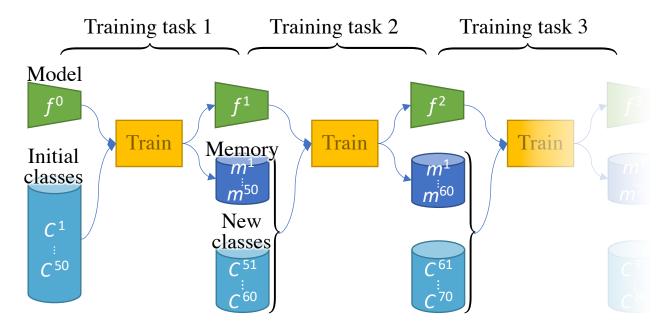
Eduardo Valle

The Task

The Task

The Task

- **New Classes (NC)** setting [1] where each new task brings new classes
- A very limited subset of previous classes data is preserved into a **memory** for rehearsal [2]
- Model is from task T is copied for task T+1

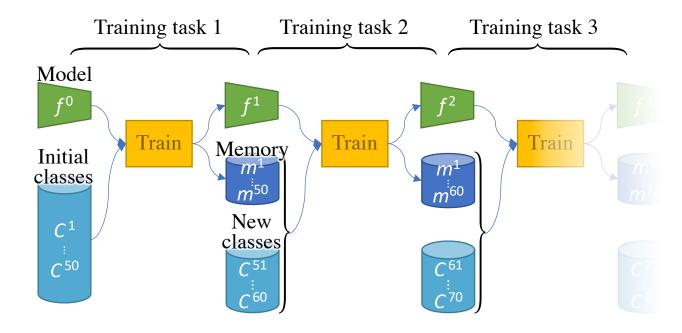


^{[1]:} CORe50: a New Dataset and Benchmark for Continuous Object Recognition, Lomonaco et al., 2017, PMLR

^{[2]:} Catastrophic Forgetting, Rehearsal, and Pseudorehearsal, Robins, 1995, Connection Science

Evaluation

- After each task, the model is evaluated on all seen classes
- We don't have access to task id in inference
- Final score is the average of all task accuracies [1]



$$AvgIncAcc = \frac{1}{N_{tasks}} (Acc_{0:50} + Acc_{0:60} + Acc_{0:70} + \dots)$$

Datasets & Increments

- Following Hou et al. [1], we evaluate on CIFAR100, ImageNet100, and ImageNet1000.
- We use a fixed amount of memory $M_{per} = 20$
 - More challenging than iCaRL setting $M_{total} = 2000$
- We also train the model on half the total classes, then incrementally add more classes
- In our case, we focus on large amount of very small tasks
 - Up to tasks made of a single new class

Baseline

Baseline

9

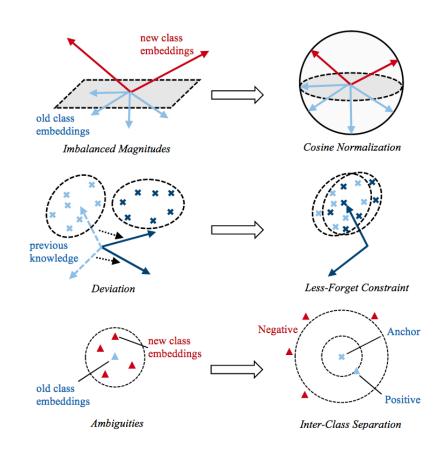
UCIR

- Our baseline is *Hou et al.*'s UCIR [1]

Cosine classifier

Cosine constraint on final embedding as distillation

Hinge-based regularization



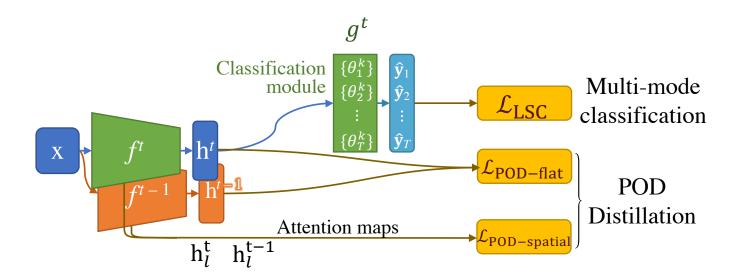
Our Model:

PODNet

Model 11

The Model

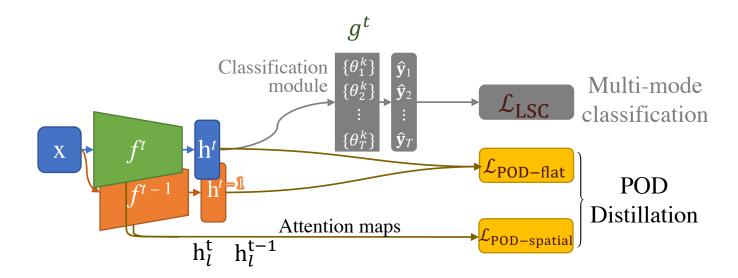
- A classification loss, to discriminate classes
- Two distillation losses, to reduce catastrophic forgetting



Model 12

POD Distillation

- A classification loss, to discriminate classes
- **Two distillation losses**, to reduce catastrophic forgetting



Shortcoming

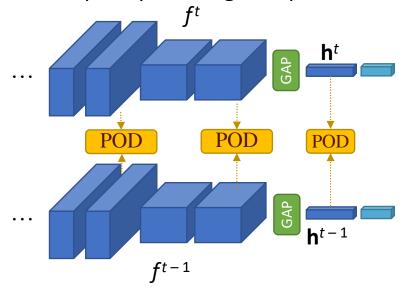
$$\mathcal{L}_{\text{Less-Forget}}(\mathbf{h}^{t-1}, \mathbf{h}^t) = \sum_{d=1}^{D} \left\| \mathbf{h}_d^{t-1} - \mathbf{h}_d^t \right\|^2$$

- We found that *Hou et al.* loss was too rigid:
 - **Forgetting** was alleviated, with a high loss factor
 - **Plasticity** was hurt, as it was difficult to learn new classes

Shortcoming

$$\mathcal{L}_{\text{Less-Forget}}(\mathbf{h}^{t-1}, \mathbf{h}^t) = \sum_{d=1}^{D} \left\| \mathbf{h}_d^{t-1} - \mathbf{h}_d^t \right\|^2$$

- We found that *Hou et al.* loss was too rigid:
 - Forgetting was alleviated, with a high loss factor
 - **Plasticity** was hurt, as it was difficult to learn new classes
- Furthermore, we only constraint the final embedding:
 - Cannot we exploit **intermediary embeddings**?
 - Can we design a loss explicitly for **images** as prior?



$$\mathcal{L}_{\text{Less-Forget}}(\mathbf{h}^{t-1}, \mathbf{h}^t) = \sum_{d=1}^{D} \left\| \mathbf{h}_d^{t-1} - \mathbf{h}_d^t \right\|^2$$

- Naïve generalization of *Hou et al.*'s loss to spatial features:

$$\mathcal{L}_{\text{POD-pixel}}(\mathbf{h}_{\ell}^{t-1}, \mathbf{h}_{\ell}^{t}) = \sum_{c=1}^{C} \sum_{w=1}^{W} \sum_{h=1}^{H} \left\| \mathbf{h}_{\ell, c, w, h}^{t-1} - \mathbf{h}_{\ell, c, w, h}^{t} \right\|^{2}$$

$$\mathcal{L}_{\text{Less-Forget}}(\mathbf{h}^{t-1}, \mathbf{h}^t) = \sum_{d=1}^{D} \left\| \mathbf{h}_d^{t-1} - \mathbf{h}_d^t \right\|^2$$

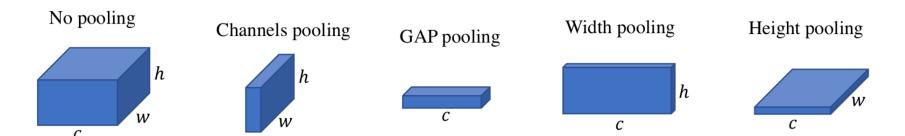
- Naïve generalization of *Hou et al.*'s loss to spatial features:

$$\mathcal{L}_{\text{POD-pixel}}(\mathbf{h}_{\ell}^{t-1}, \mathbf{h}_{\ell}^{t}) = \sum_{c=1}^{C} \sum_{w=1}^{W} \sum_{h=1}^{H} \left\| \mathbf{h}_{\ell, c, w, h}^{t-1} - \mathbf{h}_{\ell, c, w, h}^{t} \right\|^{2}$$

- However:
 - No plasticity is left, the loss is sensitive to pixel outliers
 - We don't really exploit the multiple dimensions of an image

$$\mathcal{L}_{\text{POD-pixel}}(\mathbf{h}_{\ell}^{t-1}, \mathbf{h}_{\ell}^{t}) = \sum_{c=1}^{C} \sum_{w=1}^{W} \sum_{h=1}^{H} \left\| \mathbf{h}_{\ell,c,w,h}^{t-1} - \mathbf{h}_{\ell,c,w,h}^{t} \right\|^{2}$$

- More permissive loss by pooling along a particular axis before distilling:
 - Not enforcing pixel-wise match but similar statistics



- The best **pooling** found, trading best the **stability** with **plasticity** is to pool along the spatial dimension:

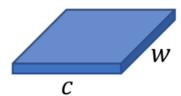
$$\mathcal{L}_{\text{POD-width}}(\mathbf{h}_{\ell}^{t-1}, \mathbf{h}_{\ell}^{t}) = \sum_{c=1}^{C} \sum_{h=1}^{H} \left\| \sum_{w=1}^{W} \mathbf{h}_{\ell,c,w,h}^{t-1} - \sum_{w=1}^{W} \mathbf{h}_{\ell,c,w,h}^{t} \right\|^{2}$$

- Likewise, for the height, and then using both:

$$\mathcal{L}_{\text{POD-spatial}}(\mathbf{h}_{\ell}^{t-1}, \mathbf{h}_{\ell}^{t}) = \mathcal{L}_{\text{POD-width}}(\mathbf{h}_{\ell}^{t-1}, \mathbf{h}_{\ell}^{t}) + \mathcal{L}_{\text{POD-height}}(\mathbf{h}_{\ell}^{t-1}, \mathbf{h}_{\ell}^{t})$$

Width pooling

Height pooling



POD Results

19

- POD-pixel is equivalent to *Hou et al.* [1]'s loss applied to spatial features
- GradCam is used in *Dhar et al.* [2]
- While they may work with large increments, they don't with large amount of small increments

Forgetting is heavy, thus plasticity is often sacrificed to get a okay performance

Spatial statistics are **more robust** and **less rigid** than pixel-wise distillations.

POD Results

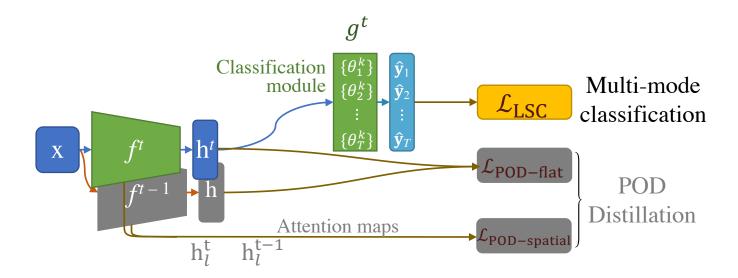
With POD-flat

Without POD-flat

Loss	NME	CNN	Loss	NM
None	53.29	52.98	\overline{None}	41.56
POD-pixels	49.74	52.34	POD-pixels	42.21
POD-channels	57.21	54.64	POD-channels	55.91
POD-gap	58.80	55.95	POD-gap	57.25
POD-width	60.92	57.51	POD-width	61.25
POD-height	60.64	57.50	POD-height	61.24
POD-spatial	61.40	57.98	POD-spatial	61.42
GradCam [4]	54.13	52.48	GradCam [4]	41.89
Perceptual Style [13]	51.01	52.25	Perceptual Style [13]	41.74

The Model

- A classification loss, to discriminate classes
- **Two distillation losses**, to reduce catastrophic forgetting

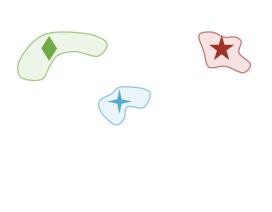


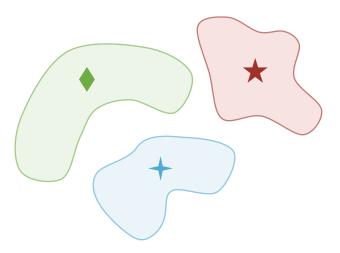
Model 22

The Model

- Even with distillation losses, the **embedding distribution change** a little

We found that each class distribution become stretched

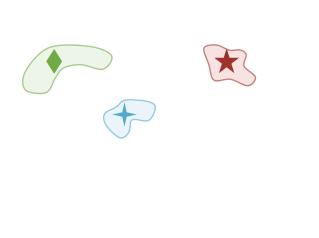


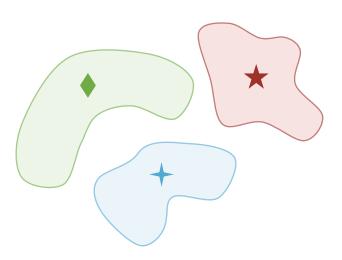


Task 1 Task N

The Model

- Even with distillation losses, the embedding distribution change a little
- We found that each class distribution become stretched
- The cosine classifier is sensitive to those changes, as it models a unique majority mode per class through its class proxies



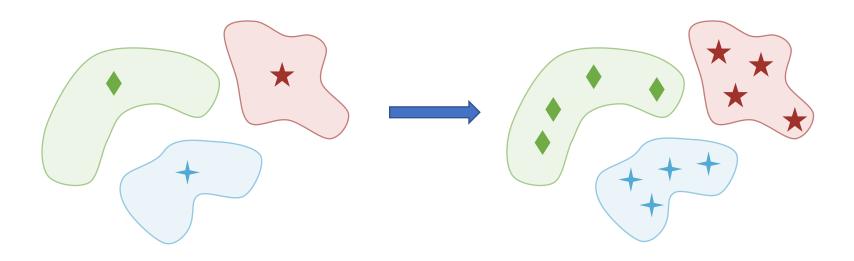


Task 1 Task N

Model 24

The Model

- Multi-modes makes the classifier more robust to distribution change



One mode per class

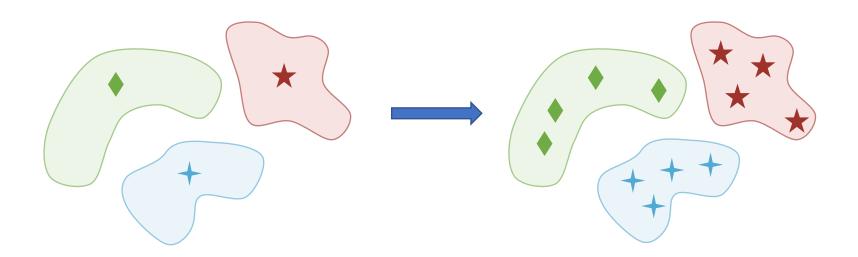
Four modes per class

The Model

- Multi-modes classifier is a **weighted average of local mode similarity**:

$$\hat{\mathbf{y}}_c = \frac{\exp\left(\eta \langle \boldsymbol{\theta}_c, \mathbf{h} \rangle\right)}{\sum_i \exp\left(\eta \langle \boldsymbol{\theta}_i, \mathbf{h} \rangle\right)}$$

$$s_{c,k} = \frac{\exp \langle \boldsymbol{\theta}_{c,k}, \mathbf{h} \rangle}{\sum_{i} \exp \langle \boldsymbol{\theta}_{c,i}, \mathbf{h} \rangle}, \qquad \hat{\mathbf{y}}_{c} = \sum_{k} s_{c,k} \langle \boldsymbol{\theta}_{c,k}, \mathbf{h} \rangle$$

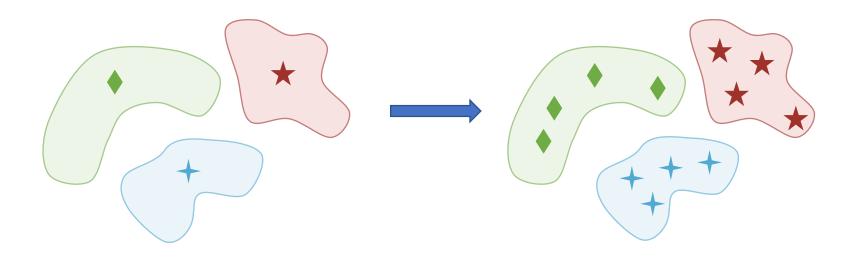


One mode per class

Four modes per class

The Model

- Multi-modes makes the classifier more robust to distribution change
- Compared to single-mode:
 - No significant gain in new classes accuracies
 - Gain of up to 2 points in **old class accuracies**



One mode per class

Four modes per class

Results

Results 28

Evaluation type

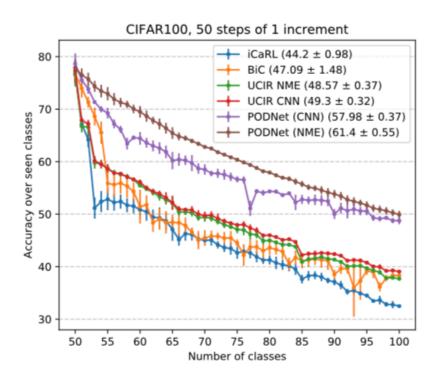
- As Hou et al. we evaluate our model with two methods:
 - Nearest Mean Exemplar (NME): classifying with a KNN on the embedding
 - **CNN**: classifying with classifier logits + argmax

CIFAR100

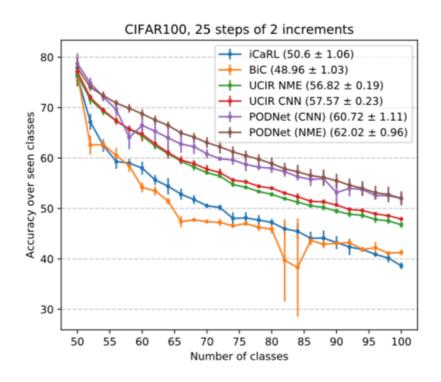
	CIFAR100						
	$50 { m steps}$	$25 { m steps}$	$10 { m steps}$	$5 { m steps}$			
New classes per step	1	2	5	10			
iCaRL*[28]		_	52.57	57.17			
iCaRL	44.20 ± 0.98	50.60 ± 1.06	53.78 ± 1.16	58.08 ± 0.59			
BiC [32]	47.09 ± 1.48	48.96 ± 1.03	53.21 ± 1.01	56.86 ± 0.46			
UCIR (NME)* [12]			60.12	63.12			
UCIR (NME)	48.57 ± 0.37	56.82 ± 0.19	60.83 ± 0.70	63.63 ± 0.87			
$UCIR (CNN)^* [12]$			60.18	63.42			
UCIR (CNN)	49.30 ± 0.32	57.57 ± 0.23	61.22 ± 0.69	64.01 ± 0.91			
PODNet (NME)	$\textbf{61.40} \pm \textbf{0.68}$	$\textbf{62.71} \pm \textbf{1.26}$	$\textbf{64.03} \pm \textbf{1.30}$	$\textbf{64.48} \pm \textbf{1.32}$			
PODNet (CNN)	$\textbf{57.98} \pm \textbf{0.46}$	$\textbf{60.72} \pm \textbf{1.36}$	$\textbf{63.19} \pm \textbf{1.16}$	$\textbf{64.83} \pm \textbf{0.98}$			

Results 30

CIFAR100



(a) 50 steps, 1 class / step



(b) 25 steps, 2 classes / step

ImageNet

	ImageNet100			Imagenet1000		
	50 steps	$25 { m steps}$	10 steps	5 steps	10 steps	5 steps
New classes per step	1	2	5	10	50	100
iCaRL* [29]	_	_	59.53	65.04	46.72	51.36
iCaRL [29]	54.97	54.56	60.90	65.56		
BiC [33]	46.49	59.65	65.14	68.97	44.31	45.72
UCIR (NME)* $[12]$	_		66.16	68.43	59.92	61.56
UCIR (NME) [12]	55.44	60.81	65.83	69.07		
UCIR $(CNN)^*$ [12]	_	_	68.09	70.47	61.28	64.34
UCIR (CNN) [12]	57.25	62.94	67.82	71.04		
PODNet (CNN)	62.08	67.28	73.14	75.82	64.13	66.95

Robustness Tests

Table 4. Effect of the memory size per class M_{per} on the models performance. Results from CIFAR100 with 50 steps, we report the average incremental accuracy

M_{per}	5	10	20	50	100	200
iCaRL	16.44	28.57	44.20	48.29	54.10	57.82
BiC	20.84	21.97	47.09	55.01	62.23	67.47
UCIR (NME)	21.81	41.92	48.57	56.09	60.31	64.24
UCIR (CNN)	22.17	42.70	49.30	57.02	61.37	65.99
PODNet (NME)	48.37	57.20	61.40	62.27	63.14	63.63
PODNet (CNN)	35.59	48.54	57.98	63.69	66.48	67.62

Table 5. Effect of the initial task size and the M_{total} on the models performance. We report the average incremental accuracy

(a) Evaluation of an easier memory constraint $(M_{\text{total}} = 2000)$

(b) Varying initial task size for 50 steps with $M_{\rm per}=20$

	Nb. s	steps		Initial task size				
Loss	50	10	Loss	10	20	30	40	50
iCaRL [29]	42.34	56.52	iCaRL	40.97	41.28	43.38	44.35	44.20
BiC [33]	48.44	55.03	BiC	41.58	40.95	42.27	45.18	47.09
UCIR (NME) [12]	54.08	62.89	UCIR (NME)	42.33	40.81	46.80	46.71	48.57
UCIR(CNN)[12]	55.20	63.62	UCIR (CNN)	43.25	41.69	47.85	47.51	49.30
PODNet (NME)	62.47	64.60	PODNet (NME)	45.09	49.03	55.30	57.89	61.40
PODNet (CNN)	61.87	64.68	PODNet (CNN)	44.95	47.68	52.88	55.42	57.98

Ablations

(a) Comparison of the performance of the model when disabling parts of the complete PODNet loss

Classifier	POD-flat	POD-spatial	$\overline{\text{NME}}$	$_{\mathrm{CNN}}$
Cosine			40.76	37.93
Cosine	✓		50.06	46.73
Cosine		✓	59.01	57.27
Cosine	✓	✓	59.50	55.72
LSC-CE	✓	✓	59.86	57.45
LSC			41.56	40.76
LSC	✓		53.29	52.98
LSC		✓	61.42	57.64
LSC	✓	✓	61.40	57.98

Thanks for attending!

What are your questions?