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- New Classes (NC) setting [1] where each new task brings new classes

- A very limited subset of previous classes data is preserved into a memory 
for rehearsal [2]

- Model is from task T is copied for task T+1

[1]: CORe50: a New Dataset and Benchmark for Continuous Object Recognition, Lomonaco et al., 2017, PMLR
[2]: Catastrophic Forgetting, Rehearsal, and Pseudorehearsal, Robins, 1995, Connection Science 
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- After each task, the model is evaluated on all seen classes
- We don’t have access to task id in inference
- Final score is the average of all task accuracies [1]

[1]: iCaRL: Incremental Classifier and Representation Learning, Rebuffi et al. CVPR 2017
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- Following Hou et al. [1], we evaluate on CIFAR100, ImageNet100, and 
ImageNet1000.

- We use a fixed amount of memory 𝑀9:; = 20
- More challenging than iCaRL setting 𝑀#>#-? = 2000

- We also train the model on half the total classes, then incrementally add
more classes

- In our case, we focus on large amount of very small tasks
- Up to tasks made of a single new class

[1]: Learning an Unified Classifier Incrementally via Rebalancing, Hou et al. CVPR 2019
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- Our baseline is Hou et al.’s UCIR [1]

[1]: Learning an Unified Classifier Incrementally via Rebalancing, Hou et al. CVPR 2019

Cosine classifier

Cosine constraint on final 
embedding as distillation 

Hinge-based regularization
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- A classification loss, to discriminate classes
- Two distillation losses, to reduce catastrophic forgetting
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- A classification loss, to discriminate classes
- Two distillation losses, to reduce catastrophic forgetting
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- We found that Hou et al. loss was too rigid:
- Forgetting was alleviated, with a high loss factor
- Plasticity was hurt, as it was difficult to learn new classes
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- We found that Hou et al. loss was too rigid:
- Forgetting was alleviated, with a high loss factor
- Plasticity was hurt, as it was difficult to learn new classes

- Furthermore, we only constraint the final embedding:
- Cannot we exploit intermediary embeddings?
- Can we design a loss explicitly for images as prior?

…

…
ht

G
AP

PODPOD
G

AP

f t – 1

f t

ht – 1

POD



POD Distillation

15Model

- Naïve generalization of Hou et al.’s loss to spatial features:

ℎ

𝑤
𝑐 𝑐 × 𝑤 × ℎ



POD Distillation

16Model

- Naïve generalization of Hou et al.’s loss to spatial features:

- However:
- No plasticity is left, the loss is sensitive to pixel outliers
- We don’t really exploit the multiple dimensions of an image
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- More permissive loss by pooling along a particular axis before distilling:

- Not enforcing pixel-wise match but similar statistics

Note that Channels-pooling+L2 distance is equivalent to Zagoruyko and Komodakis 2017’s loss.
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- The best pooling found, trading best the stability with plasticity is to pool 
along the spatial dimension:

- Likewise, for the height, and then using both:
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- POD-pixel is equivalent to Hou et al. [1]’s loss applied to spatial features
- GradCam is used in Dhar et al. [2]

- While they may work with large increments, they don’t with large amount of
small increments

[1]: Learning an Unified Classifier Incrementally via Rebalancing, Hou et al. CVPR 2019
[2]: Learning without Memorizing, Dhar et al. CVPR 2019

Forgetting is heavy, thus plasticity is 
often sacrificed to get a okay 
performance

Spatial statistics are more robust and 
less rigid than pixel-wise distillations. 
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Without POD-flatWith POD-flat
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- A classification loss, to discriminate classes
- Two distillation losses, to reduce catastrophic forgetting
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- Even with distillation losses, the embedding distribution change a little

- We found that each class distribution become stretched

Task 1 Task N
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- Even with distillation losses, the embedding distribution change a little

- We found that each class distribution become stretched

- The cosine classifier is sensitive to those changes, as it models a unique 
majority mode per class through its class proxies

Task 1 Task N
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- Multi-modes makes the classifier more robust to distribution change

Four modes per classOne mode per class
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- Multi-modes classifier is a weighted average of local mode similarity:

Four modes per classOne mode per class



The Model
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- Multi-modes makes the classifier more robust to distribution change

- Compared to single-mode:
- No significant gain in new classes accuracies
- Gain of up to 2 points in old class accuracies

Four modes per classOne mode per class
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- As Hou et al. we evaluate our model with two methods:

- Nearest Mean Exemplar (NME): classifying with a KNN on the embedding

- CNN: classifying with classifier logits + argmax



CIFAR100
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CIFAR100
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ImageNet
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Robustness Tests
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Ablations
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Thanks for attending!
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