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General goal of Lifelong-learning

We want to learn consecutive tasks, without retraining the model
from scratch every time, and without storing all the seen data.

3 scenarios (Lomonaco and Maltoni 2017)

New samples added with potentially new domains (online
learning)
New classes added (incremental learning)
New samples & new classes added
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Why does it matter

At Heuritech, we need to add every week new garment
entity.

Robots in the wild cannot relearn everything due to hardware
limitation.

A General Artificial Intelligence should be able to learn continuously
like humans do.
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Formal definition of Incremental Learning

Let be T tasks {D1, ...,DT}, with D i = {(x i1, y i1), ..., (x ini , y
i
ni

)}.

x being a datum, and y its associated target in a multi-class
classification settings.

The classification model at task t is called θt .

1 At task t, initialize current model: θt := θt−1.
2 Model θt trains solely on Dt .
3 Model θt is evaluated on {D1, ...,Dt} producing accuracy

score aj .
4 If there are remaining tasks to learn go to (1.).
5 Compute the Average Incremental Accuracy1: 1

T

∑T
k=1 a

k .

1(Rebuffi et al. 2017)
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Examples

iCIFAR100 (Rebuffi et al. 2017)

Split CIFAR100 dataset in several tasks
Ex: 50 tasks of 2 classes each.

Different datasets

Train on different consecutive datasets
ImageNet -> Birds
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Single & Multi heads evaluation

(Chaudhry et al. 2018) defines two evaluations settings:

Single-head evaluation: Model is evaluated on all tasks
together.
Multi-head evaluation: Model is evaluated on each task
separately, knowing beforehand the current task.

Previous slides concerned the single-head evaluation as the vast
majority of the literature does. So will we.
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Why it is hard

Catastrophic forgetting (French 1999)

Accuracy on previously learned classes is degraded
Trade-off between plasticity (being good on new classes) and
rigidity (being good on old classes)

Figure 1: Fine-tuning model on iCIFAR100 with 10 tasks of 10 classes 6/32
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Increment order matter!

The order of the tasks matter a lot. Whether we see boat & cat
first instead of plane & car will change the final results.

Figure 2: Varying models performance depending on the class order

EndToEnd has for results there: 66% (a), 83% (b), 63% (c).
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Three broad strategies

Three broad strategies exist in the literature (Parisi et al. 2018):

External Memory storing a limited sample of previous tasks’
data
Constraints making the model more rigid
Model Plasticity extending the capacity

They can be used together.
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Strategy 1: External Memory

External memory shows the model previous data & alleviate
catastrophic forgetting.

Memory size constraints

The memory size must be bounded
The more tasks are added, the less samples can be stored per
class

Two variants exist:

Reharsal Learning keeps a subsample of previous data
Pseudo-Reharsal Learning generates data using previous
data’s distribution
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Strategy 2: Constraints

Constraints limits the distance between the model at the end of
the previous task (θt−1) & the current model (θt).

Figure 3: Constraints between two model versions in incremental learning

Several variants exist, major ones are:

Constraining the weights
Constraining the predictions
Constraining the gradients
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Strategy 2: Constraints on weights

We add a distance between the weights of the new & old model as
a regularization loss:

Lreg =
∑
i

(θt−1
i − θti )2

The distance can be weighted by each neuron importance
(Kirkpatrick et al. 2017; Aljundi et al. 2018).

Lreg =
∑
i

Ωt−1
i (θt−1

i − θti )2

The first (EWC) uses the average gradients variance as an
importance metric.
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Strategy 2: Constraints on predictions

LwF forces θti to have similar predictions with θt−1
i for the old

targets (Li and Hoiem 2018).

Ldistillation(y tc , y
t−1
c ) = −

C∑
c=1

y t−1log(y t)

It is similar to the teacher/student of Knowledge Distillation
(Hinton, Vinyals, and Dean 2015).

A temperature can be used to soften the logits:

ỹi =
y

1
Temp
i∑C

j=1 y
1

Temp
j
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Strategy 2: Constraints on the gradients

We constrain the loss of θt to lower or equal to the loss of the θt−1

on the external memory M samples (Lopez-Paz and Ranzato 2017;
Aljundi et al. 2019):

L(θ,M) =
1
|M|

∑
(xi ,yi )∈M

L(θ(xi ), yi )

L(θt ,M)) ≤ L(θt−1,M))

Note that there is no need to store θt−1 as long as we ensure
iteratively that no update violates the constraint.
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Strategy 2: Constraints on the gradients

L(θt ,M)) ≤ L(θt−1,M))

(Lopez-Paz and Ranzato 2017)’s GEM rephrased it as an angle
constraint on the gradients. We want the gradients "to go in the
same direction":

〈∂L(θ(xi ), yi )

∂θ
,
∂L(θ,M)

∂θ
〉 ≥ 0

If this constraint is violated, the gradient g is projected to its
closest valid alternative g̃ :

minimizeg̃ ‖g − g̃‖2

subject to 〈gM , g̃〉 ≥ 0
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Exploiting the model capacity
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Strategy 3: Model plasticity

Most algorithms add new neurons to the classifier to classify
new tasks.

(Yoon et al. 2018)’s Dynamically Expandable Networks increases
model capacity by adding new neurons to all layers if the model
cannot generalize well enough on the new task.

(Fernando et al. 2017; Golkar, Kagan, and Cho 2019)’s PathNet and
Neural Pruning want to exploit better the existing capacity: they
use the fact that networks are over-parametrized2 to uncover
sub-networks for each tasks.

2See Lottery Ticket Hypothesis (Frankle and Carbin 2019)
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Our focus

We will focus on incremental learning with the iCIFAR100
benchmark.

iCIFAR100 (Rebuffi et al. 2017)

Split CIFAR100 dataset in several tasks
Tested with 50 tasks of 2 classes, 20 of 2, 10 of 10, and 2 of
50.

We will base our work on iCaRL (Rebuffi et al. 2017) and
End-to-End Incremental Learning (Castro et al. 2018).
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iCaRL & EndToEnd

Common attributes

Fixed-size memory with an examplars selection
Constraints on the predictions consistency
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Fixed-size memory

Memory size fixed to K = 2000 images ("examplars").
The number of images per class in the memory decreases as
the number of tasks grows.
Model is trained on whole new data + memory data.
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Memory selection for iCaRL

Iterative selection where an image is selected if its mean with all
the already selected examplars is closest to class mean:

Figure 4: iCaRL’s memory selection

(Javed and Shafait 2018) claims that this selection method is as
good as a random selection.
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Memory selection for EndToEnd

The closest images to their class mean are selected:

minimizex ‖µ− x‖2

Authors note that their selection is only a minor improvement over
a random selection (63.6% vs 63.1%).
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Predictions consistency for iCaRL

iCaRL’s last activation is a multi-sigmoid.

It has:

One classification loss which is a binary cross-entropy with
the new targets.
One distillation loss which is a binary cross-entropy between
the current and previous model old targets predictions.

Both are applied on new data and memory data.
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Predictions consistency for iCaRL

Figure 5: iCaRL’s losses: classification & distillation
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Predictions consistency for EndToEnd

Figure 6: EndToEnd’s losses: classification & distillations
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Predictions consistency for EndToEnd

L(θt) = Lcls(θ
t) +

t−1∑
i=1

Ldistilli (θ
t)

Classification is a softmax + cross-entropy applied on task’s data &
memory data for all the targets.

Lcls = − 1
N

N∑
i=1

C∑
j=1

pi j log(qi j)

Distillation is like classification but both the old and new
predictions targets are smoothed as in LwF.

ỹi =
y

1
Temp
i∑C

j=1 y
1

Temp
j 24/32
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Training scheduling for iCaRL

Scheduling

Train for 70 epochs.
Initial learning rate of 2.0 decayed throught the training.
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Training scheduling for EndToEnd

Scheduling

1 Train for 40 epochs with a low learning rate that is decayed.
2 Reduce the new dataset using their examplar selection to

balance the classes.
3 Add a distillation loss to the new classes.
4 Fine-tuning for 30 epochs with a very low learning rate.

Figure 7: EndToEnd’s training scheduling

26/32



Introduction iCaRL & EndToEnd References

Augmentations & regularizations

iCaRL

Augmentation: Horizontal flip
Regularization: L2 Weight decay

End-to-End Incremental Learning

Augmentation: Horizontal flip + random cropping +
brightness + constrast.
Regularization: L2 weight decay, gradient noise, and gradient
L2 regularization.
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Inference

iCaRL

For each class, computes the mean of examplars.
Uses a nearest-neighbours classifier with all the examplars
means

End-to-End Incremental Learning

Classify with its fully-connected weights + a softmax/argmax
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